logo

Performance of the CENDL-3.2 and other major neutron data libraries for criticality calculations

NUCLEAR ENERGY SCIENCE AND ENGINEERING

Performance of the CENDL-3.2 and other major neutron data libraries for criticality calculations

Bin Zhang
Xu-Bo Ma
Kui Hu
Teng Zhang
Xuan Ma
Yi-Xue Chen
Nuclear Science and TechniquesVol.33, No.1Article number 1Published in print Jan 2022Available online 18 Jan 2022
57703

Nuclear data are the cornerstones of reactor physics and shielding calculations. Recently, China released CENDL-3.2 in 2020, and the United States released ENDF/B-VIII.0 in 2018. Therefore, it is necessary to comprehensively evaluate the criticality computing performance of these newly released evaluated nuclear libraries. In this study, we used the NJOY2016 code to generate ACE format libraries based on the latest neutron data libraries (including CENDL-3.2, JEFF3.3, ENDF/B-VIII.0, and JENDL4.0). The MCNP code was used to conduct a detailed analysis of fission nuclides, including 235U, 233U, and 239Pu, in different evaluated nuclear data libraries based on 100 benchmarks. The criticality calculation performance of each library was evaluated using three statistical parameters: δk/σ, χ2, and |Δ|. Analysis of the δk/σ parameter showed that CENDL-3.1 and JENDL-4.0 both had >10 benchmarks that exceeded 3σ, whereas CENDL-3.2, ENDFB-VIII.0, and JEFF-3.3 had, 7, 5, and 4 benchmarks, respectively, exceeding 3σ. The ENDF/B-VII.1 library performed best, with only two benchmarks exceeding 3σ. Compared with CENDL-3.1, CENDL-3.2 offers an improvement in criticality calculations. Compared with the JEFF-3.3 and ENDF/B-VIII.0 libraries, CENDL3.2 performs better in the calculation of the 233U assemblies, but it performs poorly in the pusl11 series case calculation of the 239Pu assemblies, and thus further improvement is needed.

Criticality calculationsCENDL-3.2ENDF/B-VIII.0NeutronACE library
1

Introduction

Evaluated nuclear data libraries are the basis of reactor physics and shielding calculations. Currently, there are five major evaluated nuclear libraries in the world. Recently, the world’s major nuclear data libraries have successively released their latest versions. In 2020, the China Institute of Atomic Energy released CENDL-3.2 [1]. Data for most of the key nuclides in nuclear applications (e.g., U, Pu, Th, and Fe) have been revised and updated in CENDL-3.2. In 2018, the Brookhaven National Laboratory in the United States released ENDF/B-VIII.0 [2]. ENDF/B-VIII.0 fully incorporates the new International Atomic Energy Agency standards, includes improved thermal neutron scattering data, and uses newly evaluated data from the CIELO project [3] for neutron reactions on 1H, 16O, 56Fe, 235U, 238U, and 239Pu. In 2017, the Nuclear Energy Agency officially released JEFF-3.3 [4], which thoroughly updated the neutron, decay data, fission yields, and neutron activation libraries in EAF format and provided neutron thermal scattering files for 20 compounds. In 2010, the Japan Atomic Energy Agency released JENDL4.0 [5]. In this new library, much emphasis is placed on the improvement of fission products and minor actinoid data. As of 2016, the ENDF files of some nuclides in JENDL4.0 have been updated. In addition, China's nuclear data measurement technology has also progressed, providing effective support for the evaluation of the CENDL library. Researchers at the Chinese Academy of Sciences [6] measured the neutron capture cross section of 197Au using the time-of-flight technique at the Back-n facility of the China Spallation Neutron Source in the 1 eV to 100 keV range. The results are in good agreement with the ENDF/BVIII.0, CENDL-3.1, and other libraries in the resonance region and in agreement with both neutron time-of-flight and GELINA experimental data in the 5–100 keV range. In addition, researchers at Lanzhou University [7] measured cross sections of the (n,2n) reactions for Nd isotopes induced by 14-MeV neutrons using activation and relative methods. The present results are generally consistent with the ENDF/B-VII.1, CENDL-3.1, and JENDL-4.0 data at neutron energies of 14.2 and 14.9 MeV.

An evaluated nuclear data library cannot be used directly and needs to be processed into a working nuclear library using a nuclear data processing code (such as NJOY [8] or NECP-Atlas [9]). In general, working nuclear libraries are divided into multi-group cross-section libraries for deterministic codes and continuous point-wise cross-section libraries for stochastic codes. The ACE format [10] is a common continuous point-wise cross-section library storage format used in stochastic codes for reactor physics and shielding calculations.

From civil nuclear power plants to space reactors for aerospace and power reactors for submarines, many applications have high requirements for nuclear data libraries. Different evaluated nuclear data libraries employ different evaluations for some important reaction channels of key nuclides. Therefore, it is necessary to conduct detailed tests on the quality of nuclear data from different nuclear data libraries. The validation of nuclear data libraries generally includes criticality, shielding, and depletion tests. The criticality benchmark test is an important form of acceptance testing that can effectively test the data accuracy of key fission nuclides and provide effective guidance for thermal and fast reactor designs. In addition, a more detailed understanding of the criticality calculation performance of the newly released evaluated nuclear data libraries is needed to provide a reference for the choice of nuclear data libraries in thermal and fast reactor designs. Hence, it is very important to evaluate the quality of the newly released nuclear library through criticality benchmark testing.

In this study, the MCNP [11] code was used to evaluate the performance of the newly released evaluated nuclear data libraries for criticality calculations. Several criticality benchmarks from the ICSBEP manual [12] were selected to verify the performance of criticality calculations. The criticality calculation performance of each library was evaluated using three statistical parameters: δk/σ, χ2, and |Δ| [13, 14]. The remainder of this paper is organized as follows: Section 2 introduces the methods for the development of the ACE libraries, Section 3 describes the numerical verification of the newly released libraries, and Sect. 4 presents our conclusions.

2

Methodology

To study the criticality calculation performance of the newly released evaluated nuclear data libraries, the ACE-formatted libraries for Monte Carlo code calculations based on the CENDL-3.1 [15], CENDL-3.2, ENDF/B-VIII.0, ENDF/B-VII.1 [16], JEFF-3.3, and JENDL-4.0 were created using the NJOY2016 code [8]. Based on the criticality benchmarks in the ICSBEP manual, the criticality calculation performance of different evaluated nuclear data libraries was studied in detail using statistical analysis methods. Section 2.1 describes the methods used to develop the ACE-formatted libraries. Section 2.2 describes the ICSBEP benchmark suite. Section 2.3 describes the details of the statistical analysis methods.

2.1
ACE-formatted libraries and MCNP simulation details

The ACE library production and MCNP simulation processes are shown in Fig. 1. The NJOY program is a popular nuclear data processing program that can generate nuclear data in multiple formats for shielding and criticality calculations based on the evaluated nuclear data library. The JOYPI code can generate NJOY inputs for the development of the ACE library. The ACE format library is a continuous point section library for Monte Carlo program calculations and can be processed by using the NJOY program. The main NJOY modules used to make the ACE library include RECONR, BROASDR, THERMR, PURR, and ACER. The RECONR module performs the point cross-section resonance reconstruction function based on the ENDF file data. The BROADR module performs the temperature-related Doppler broadening function. The THERMR module generates the cross sections for free scatters in the thermal energy range. The PURR module calculates the unresolved resonance probability tables, and the ACER module converts the previously generated data into a c-type ACE file for use in MCNP.

Fig. 1
Production and verification process for the ACE-formatted libraries. MODER, RECONR, BROADR, HEATR, GASPR, THERMR, PURR, ACER are the modules of the NJOY 2016 code. JOYPI is an automatic NJOY input card generating program.
pic

In the benchmark suite of the ICSBEP manual, some benchmarks contain thermal neutron scattering materials, and the corresponding thermal neutron scattering sub-library (TSL library) needs to be processed for calculation. For the new versions of ENDF/B-VIII.0, JENDL-4.0, and JEFF-3.3, there are corresponding TSL libraries, but for CENDL-3.2 and CENDL-3.1, no TSL library is provided. Therefore, to maintain the consistency of verification for different evaluated nuclear data libraries, we used the verified and publicly available data of the ACE thermal scattering library of JEFF-3.3 to perform criticality calculations for the benchmarks with thermal neutron scattering materials. The purpose of this study is to verify the overall criticality calculation performance of neutron data libraries. The standard neutron ACE library used in this study was based on different data libraries and was produced using the NJOY2016 program. If there are moderators in the benchmark facilities, the TSL library must be considered in the calculations. The TSL library used for the benchmark with moderators was from the JEFF3.3 ACE library.

For all assemblies calculated by MCNP, 3000 source neutrons were run per kcode cycle. For all metal assembly benchmarks, 40 inactive cycles and 360 active cycles were run. For the solution assemblies, 40 inactive cycles and 760 active cycles were run. These numbers ensure that sufficient active cycles are run to obtain good statistics for keff calculations [17]. All these benchmarks use the total nubar data in the MCNP input. Eigenvalue uncertainties were < 70 pcm, which is approximately an order of magnitude lower than most benchmark uncertainties.

2.2
Description for the criticality benchmarks suite

A set of 100 criticality safety benchmarks was selected and established for the MCNP code. Benchmarks were obtained from two reports: a suite of criticality benchmarks for validating nuclear data [17] and an expanded criticality validation suite for MCNP [18]. Among the 100 benchmark cases, 88 were from the first report and 12 were from the second one. Although all benchmark cases have standard ICSBEP names, the names are too long to be displayed in the chart when describing them; therefore, they are usually represented by abbreviations. The abbreviations of the benchmark cases used in this study are consistent with those of the above two reports.

The fission nuclides 233U, 235U, and 239Pu produce the majority of fission products in the reactor. The criticality benchmark suite in this study is made up of five major categories based on the major fission nuclides: critical assemblies utilizing 233U, intermediate-enriched 235U (IEU), highly enriched 235U (HEU), 239Pu, and mixed metal (MIX) assemblies. Within each category, there were bare, reflected, and solution assemblies. The classification of the assembly and the number of each classification are listed in Table 1. The ICSBEP benchmarks and their abbreviations and the benchmark keff reference values used in this study are listed in Table 8 in Appendix A, and the calculated keff values and statistical errors of each data library are listed in Table 9.

Table 1
Start this caption with a short description of your table.
Assembly 233U IEU HEU 239Pu MIX Total
Case numbers 17 14 37 21 11 100
Show more
Table 8
ICSBEP benchmark abbreviation and reference keff value
Type Abbreviation ICSBEP Reference Benchmark keff
233U 23umt1 233U-MET-FAST-001 1.0000±0.00100  
233U 23umt2a 233U-MET-FAST-002 Case 1 1.0000±0.00100  
233U 23umt2b 233U-MET-FAST-002 Case 2 1.0000±0.00110  
233U 23umt3a 233U-MET-FAST-003 Case 1 1.0000±0.00100  
233U 23umt3b 233U-MET-FAST-003 Case 2 1.0000±0.00100  
233U 23umt4a 233U-MET-FAST-004 Case 1 1.0000±0.00070  
233U 23umt4b 233U-MET-FAST-004 Case 2 1.0000±0.00080  
233U 23umt5a 233U-MET-FAST-005 Case 1 1.0000±0.00300  
233U 23umt5b 233U-MET-FAST-005 Case 2 1.0000±0.00300  
233U 23umt6 233U-MET-FAST-006 1.0000±0.00140  
233U 23usl1a 233U-SOL-THERM-001 Case 1 1.0000±0.00310  
233U 23usl1b 233U-SOL-THERM-001 Case 2 1.0005±0.00330  
233U 23usl1c 233U-SOL-THERM-001 Case 3 1.0006±0.00330  
233U 23usl1d 233U-SOL-THERM-001 Case 4 0.9998±0.00330  
233U 23usl1e 233U-SOL-THERM-001 Case 5 0.9999±0.00330  
233U 23usl8 233U-SOL-THERM-008 1.0006±0.00290  
HEU bigten1 F-10-1 (In CSEWG) 0.9960±0.00300  
HEU bigten2 F-10-2 (In CSEWG) 0.9960±0.00300  
233U flat23 F-24 (In CSEWG) 1.0000±0.00100  
IEU ieumt1a IEU-MET-FAST-001 Case 1 0.9989±0.00100  
IEU ieumt1b IEU-MET-FAST-001 Case 2 0.9997±0.00100  
IEU ieumt1c IEU-MET-FAST-001 Case 3 0.9993±0.00050  
IEU ieumt1d IEU-MET-FAST-001 Case 4 1.0002±0.00050  
IEU ieumt2 IEU-MET-FAST-002 1.0000±0.00300  
IEU ieumt3 IEU-MET-FAST-003 1.0000±0.00170  
IEU ieumt4 IEU-MET-FAST-004 1.0000±0.00300  
IEU ieumt5 IEU-MET-FAST-005 1.0000±0.00210  
IEU ieumt6 IEU-MET-FAST-006 1.0000±0.00230  
MIX mixmet1 MIX-MET-FAST-001 1.0000±0.00160  
MIX mixmet3 MIX-MET-FAST-001 0.9993±0.00160  
239U pumet1 PU-MET-FAST-001 1.0000±0.00200  
239U pumet10 PU-MET-FAST-010 1.0000±0.00180  
239U pumet11 PU-MET-FAST-011 1.0000±0.00100  
239U pumet18 PU-MET-FAST-018 1.0000±0.00300  
239U pumet19 PU-MET-FAST-019 0.9992±0.00150  
239U pumet2 PU-MET-FAST-002 1.0000±0.00200  
239U pumet20 PU-MET-FAST-020 0.9993±0.00170  
239U pumet22 PU-MET-FAST-022 1.0000±0.00210  
239U pumet23 PU-MET-FAST-023 1.0000±0.00200  
239U pumet24 PU-MET-FAST-024 1.0000±0.00200  
239U pumet25 PU-MET-FAST-025 1.0000±0.00200  
239U pumet26 PU-MET-FAST-026 1.0000±0.00240  
239U pumet5 PU-MET-FAST-005 1.0000±0.00130  
239U pumet6 PU-MET-FAST-006 1.0000±0.00300  
239U pumet8a PU-MET-FAST-008 Case 1 1.0000±0.00300  
239U pumet8b PU-MET-FAST-008 Case 2 1.0000±0.00060  
239U pumet9 PU-MET-FAST-009 1.0000±0.00270  
239U pumt21a PU-MET-FAST-021 Case 1 1.0000±0.00260  
239U pumt21b PU-MET-FAST-021 Case 2 1.0000±0.00260  
239U pusl11a PU-SOL-THERM-011 Case 18-1 1.0000±0.00520  
239U pusl11b PU-SOL-THERM-011 Case 18-6 1.0000±0.00520  
239U pusl11c PU-SOL-THERM-011 Case 16-5 1.0000±0.00520  
239U pusl11d PU-SOL-THERM-011 Case 16-1 1.0000±0.00520  
HEU umet11 HEU-MET-FAST-011 0.9989±0.00150  
HEU umet13 HEU-MET-FAST-013 0.9990±0.00150  
HEU umet14 HEU-MET-FAST-014 0.9989±0.00170  
HEU umet18 HEU-MET-FAST-018 1.0000±0.00160  
HEU umet19 HEU-MET-FAST-019 1.0000±0.00300  
HEU umet1ns HEU-MET-FAST-001 Case b 1.0000±0.00100  
HEU umet1ss HEU-MET-FAST-001 Case a 1.0000±0.00100  
HEU umet20 HEU-MET-FAST-020 1.0000±0.00300  
HEU umet21 HEU-MET-FAST-021 1.0000±0.00260  
HEU umet22 HEU-MET-FAST-022 1.0000±0.00210  
HEU umet28 HEU-MET-FAST-028 1.0000±0.00300  
HEU umet3a HEU-MET-FAST-003 Case 1 1.0000±0.00500  
HEU umet3b HEU-MET-FAST-003 Case 2 1.0000±0.00500  
HEU umet3c HEU-MET-FAST-003 Case 3 1.0000±0.00500  
HEU umet3d HEU-MET-FAST-003 Case 4 1.0000±0.00300  
HEU umet3e HEU-MET-FAST-003 Case 5 1.0000±0.00300  
HEU umet3f HEU-MET-FAST-003 Case 6 1.0000±0.00300  
HEU umet3g HEU-MET-FAST-003 Case 7 1.0000±0.00300  
HEU umet3h HEU-MET-FAST-003 Case 8 1.0000±0.00500  
HEU umet3i HEU-MET-FAST-003 Case 9 1.0000±0.00500  
HEU umet3j HEU-MET-FAST-003 Case 10 1.0000±0.00500  
HEU umet3k HEU-MET-FAST-003 Case 11 1.0000±0.00500  
HEU umet3l HEU-MET-FAST-003 Case 12 1.0000±0.00300  
HEU umet4a HEU-MET-FAST-004 Case 2 1.0020±0.00100  
HEU umet4b HEU-MET-FAST-004 Case 1 1.0003±0.00050  
HEU umet9a HEU-MET-FAST-009 Case 1 0.9992±0.00150  
HEU umet9b HEU-MET-FAST-009 Case 2 0.9992±0.00150  
HEU usol13a HEU-SOL-THERM-003 Case 1 1.0012±0.00260  
HEU usol13b HEU-SOL-THERM-003 Case 2 1.0007±0.00360  
HEU usol13c HEU-SOL-THERM-003 Case 3 1.0009±0.00360  
HEU usol13d HEU-SOL-THERM-003 Case 4 1.0003±0.00360  
HEU usol32 HEU-SOL-THERM-032 1.0015±0.00260  
HEU umet8 HEU-MET-FAST-008 0.9989±0.00160  
HEU umet12 HEU-MET-FAST-012 0.9992±0.00180  
HEU umet15 HEU-MET-FAST-015 0.9996±0.00170  
MIX mixmet8-1 MIX-MET-FAST-008 Case 1 0.9920±0.00630  
MIX mixmet8-7 MIX-MET-FAST-008 Case 7 1.0030±0.00250  
IEU lst7-14 leu-sol-therm-007-case-14 0.9961±0.00090  
IEU lst7-30 leu-sol-therm-007-case-30 0.9973±0.00090  
IEU lst7-32 leu-sol-therm-007-case-32 0.9985±0.00100  
IEU lst7-36 leu-sol-therm-007-case-36 0.9988±0.00110  
IEU lst7-49 leu-sol-therm-007-case-49 0.9983±0.00110  
MIX mct2-pnl30 mix-comp-therm-002-case-pnl30 1.0024±0.00600  
MIX mct2-pnl31 mix-comp-therm-002-case-pnl31 1.0009±0.00470  
MIX mct2-pnl33 mix-comp-therm-002-case-pnl33 1.0024±0.00210  
MIX mct2-pnl34 mix-comp-therm-002-case-pnl34 1.0038±0.00250  
MIX mct2-pnl35 mix-comp-therm-002-case-pnl35 1.0029±0.00270  
MIX mmf1 mix-met-fast-001 1.0000±0.00160  
MIX mmf3 mix-met-fast-003 0.9993±0.00160  
Show more
Table 9
keff values and statistical errors of different libraries
Case CENDL-3.1 CENDL-3.2 ENDF/B-VII.1 ENDF/B-VIII.0 JEFF-3.3 JENDL-4.0
23umt1 0.99987±0.00055 1.00211±0.00058 1.00059±0.00055 0.99963±0.00053 1.00080±0.00056 0.99923±0.00056  
23umt2a 0.99676±0.00055 0.99936±0.00059 1.00000±0.00056 1.00004±0.00059 0.99955±0.00057 0.99861±0.00055  
23umt2b 0.99792±0.00056 1.00111±0.00056 0.99927±0.00060 1.00186±0.00058 1.00183±0.00061 1.00031±0.00057  
23umt3a 0.99803±0.00058 1.00014±0.00060 0.99932±0.00060 1.00011±0.00057 1.0022±0.00060 0.99962±0.00059  
23umt3b 0.99876±0.00062 0.99996±0.00059 1.00014±0.00057 1.00033±0.00060 1.00206±0.0006 0.99731±0.00063  
23umt4a 0.99495±0.00058 1.00034±0.00058 0.99878±0.00059 0.99909±0.00054 1.00038±0.00060 1.00121±0.00063  
23umt4b 0.99019±0.00063 0.99711±0.00061 0.99514±0.00063 0.99487±0.00062 0.9982±0.00063 0.99814±0.00063  
23umt5a 0.99050±0.00061 0.99517±0.00061 0.99659±0.00064 0.99817±0.00060 0.99698±0.00062 0.99646±0.00063  
23umt5b 0.98751±0.00064 0.99441±0.00063 0.99577±0.00065 0.99733±0.00065 0.99612±0.00065 0.99485±0.00066  
23umt6 0.99915±0.00067 0.99901±0.00070 0.99907±0.00057 0.99940±0.00066 1.00359±0.00068 0.99773±0.00067  
23usl1a 1.00322±0.00038 1.00128±0.00036 1.00183±0.00038 1.00045±0.00038 1.00209±0.00038 0.99770±0.00039  
23usl1b 1.00333±0.00039 1.00109±0.00037 1.00224±0.00039 1.00005±0.00037 1.00162±0.00040 0.99775±0.00038  
23usl1c 1.00243±0.00038 1.00006±0.00039 1.00147±0.00040 1.00027±0.00038 1.00157±0.00039 0.99746±0.00039  
23usl1d 1.00243±0.00039 1.00041±0.00039 1.00162±0.00037 0.99976±0.00039 1.00098±0.00042 0.99730±0.00040  
23usl1e 1.00185±0.00040 1.00033±0.00042 1.00037±0.00041 0.99906±0.00039 1.00135±0.00042 0.99644±0.00040  
23usl8 1.00131±0.00026 0.99988±0.00025 1.00129±0.00025 0.99976±0.00026 1.00214±0.00025 0.99680±0.00026  
bigten1 0.99801±0.00048 0.99649±0.00052 0.99823±0.00047 0.99667±0.00048 0.99862±0.00051 0.99023±0.00047  
bigten2 0.99613±0.00047 0.99385±0.00049 0.99628±0.00048 0.99644±0.00049 0.99693±0.00049 0.98773±0.00044  
flat23 1.00027±0.00064 1.00138±0.00064 1.00032±0.00066 1.00291±0.00065 1.00512±0.00067 0.99920±0.00066  
ieumt1a 1.00007±0.00061 1.00039±0.00061 1.00109±0.00056 0.99864±0.00057 0.99978±0.00058 0.99673±0.00058  
ieumt1b 1.00140±0.00061 1.00102±0.00061 1.00061±0.00056 0.99946±0.00060 1.00086±0.00058 0.99644±0.00060  
ieumt1c 1.00277±0.00061 0.99941±0.00058 1.00158±0.00060 0.99893±0.00059 1.00000±0.00058 0.99521±0.00060  
ieumt1d 1.00141±0.00061 1.00081±0.00059 1.00188±0.00058 0.99856±0.00063 1.00022±0.00061 0.99483±0.00058  
ieumt2 0.99818±0.00059 0.99884±0.00052 0.99925±0.00058 0.99610±0.00052 0.99620±0.00055 0.98842±0.00057  
ieumt3 1.00123±0.00060 1.00138±0.00057 1.00261±0.00062 0.99898±0.00061 1.00147±0.00057 0.99598±0.00061  
ieumt4 1.00838±0.00060 1.00672±0.00059 1.00749±0.00059 1.00529±0.00061 1.00543±0.00062 0.99869±0.00061  
ieumt5 1.00015±0.00055 1.00467±0.00061 1.00131±0.00056 1.00044±0.00065 1.00048±0.00060 0.99469±0.00054  
ieumt6 0.99812±0.00060 0.99560±0.00054 0.99677±0.00059 0.99397±0.00055 0.99335±0.00058 0.99003±0.00058  
mixmet1 0.99905±0.00059 0.9984±0.00058 1.00009±0.00058 0.99891±0.00057 0.99858±0.00055 0.99774±0.00056  
mixmet3 0.9999±0.000610 1.00074±0.00062 1.00084±0.00064 1.00087±0.00066 1.00030±0.00062 0.99795±0.00058  
pumet1 1.00253±0.00055 1.00218±0.00058 1.00031±0.00056 1.00008±0.00058 0.99953±0.00058 0.99878±0.00060  
pumet10 0.99852±0.00060 0.99848±0.00060 0.99966±0.00060 0.99797±0.00060 1.00002±0.00062 0.99628±0.00059  
pumet11 1.00243±0.00079 1.00094±0.00074 0.99953±0.00071 0.99955±0.00068 1.00056±0.00073 1.00137±0.00070  
pumet18 0.99854±0.00061 0.99652±0.00061 1.00024±0.00065 0.99828±0.00061 0.99804±0.00061 0.99760±0.00060  
pumet2 1.00234±0.00058 1.00304±0.00059 1.00050±0.00057 1.00126±0.00057 1.00216±0.00058 0.99794±0.00059  
pumet20 0.99561±0.00064 0.99738±0.00064 0.99814±0.00061 0.99664±0.00061 0.99942±0.00056 0.99616±0.00063  
pumet22 1.00061±0.00057 0.99995±0.00054 0.99924±0.00057 0.99859±0.00057 0.99772±0.00056 0.99624±0.00054  
pumet23 1.00001±0.00061 1.00098±0.00057 0.99935±0.00058 0.99717±0.00059 1.00003±0.00054 0.99556±0.00061  
pumet24 1.00367±0.00064 1.00362±0.00065 1.00124±0.00063 1.00128±0.00064 1.00100±0.00061 1.00023±0.00062  
pumet25 0.99696±0.00058 1.00024±0.00060 0.99992±0.00057 1.00056±0.00062 0.99662±0.00060 0.99651±0.00059  
pumet26 0.99313±0.00057 1.00042±0.00061 0.99969±0.00060 1.00077±0.00058 0.99759±0.00064 0.99486±0.00062  
pumet5 1.00024±0.00057 1.00165±0.00061 1.00176±0.00063 0.99948±0.00061 1.00113±0.00064 1.00200±0.00061  
pumet6 0.99877±0.00061 0.99832±0.00070 0.99996±0.00071 0.99918±0.00074 1.00354±0.00067 0.99947±0.00069  
pumet8a 1.00371±0.00059 1.00254±0.00059 0.99807±0.00061 0.99753±0.00061 0.99801±0.00062 0.99747±0.00062  
pumet8b 1.00367±0.00062 1.00292±0.00061 0.99778±0.00063 0.99677±0.00054 0.99683±0.00060 0.99644±0.00062  
pumet9 1.00483±0.00058 1.01041±0.00061 1.00577±0.00063 1.00511±0.00063 1.00437±0.00059 1.00183±0.00057  
pumt21b 0.99428±0.00060 0.99490±0.00062 0.99372±0.00064 0.99176±0.00063 0.99332±0.00064 0.99422±0.00066  
pusl11a 1.01086±0.00052 1.00619±0.00054 0.99577±0.00051 0.98934±0.00055 0.99104±0.0005 0.99605±0.00052  
pusl11b 1.01542±0.00053 1.01321±0.00054 1.00147±0.00055 0.99524±0.00054 0.99601±0.00055 1.00078±0.00055  
pusl11c 1.02311±0.00062 1.01914±0.00062 1.00528±0.00063 0.99987±0.00062 1.0025±0.00060 1.00659±0.00060  
pusl11d 1.02745±0.00061 1.02445±0.00059 1.00898±0.00060 1.00400±0.00060 1.00645±0.00058 1.01147±0.00061  
umet11 0.99985±0.00072 0.99868±0.00069 0.99752±0.00074 0.99657±0.00070 0.99732±0.00073 0.99465±0.00077  
umet13 0.99589±0.00060 0.99865±0.00063 0.99829±0.00059 0.99839±0.00058 0.99630±0.00059 0.99381±0.00060  
umet14 0.99665±0.00060 0.99767±0.00062 0.99842±0.00057 0.99588±0.00063 0.99818±0.00063 0.99341±0.00058  
umet18 0.99958±0.00059 0.99902±0.00059 0.99972±0.00054 0.99985±0.00059 1.00025±0.00062 0.99680±0.00056  
umet19 1.00921±0.00061 1.00776±0.00065 1.00676±0.00063 1.00526±0.00060 1.00683±0.0006 1.00086±0.00061  
umet1ns 1.00107±0.00057 0.99983±0.00054 1.00009±0.00060 1.00075±0.00056 1.00028±0.00058 0.99886±0.00057  
umet1ss 1.00098±0.00057 1.00064±0.00054 1.00043±0.00057 1.00004±0.00057 1.00085±0.00055 0.99806±0.00055  
umet20 1.00135±0.00063 1.00088±0.00066 0.99999±0.00066 0.99955±0.00065 1.00062±0.00063 0.99699±0.00063  
umet21 0.99525±0.00061 1.00066±0.00062 0.99820±0.00063 0.99916±0.00065 0.99765±0.00058 0.99370±0.00057  
umet22 0.99777±0.00057 0.99934±0.00059 0.99677±0.00057 0.99763±0.00058 0.99719±0.00060 0.99428±0.00056  
umet28 1.00207±0.00061 1.00103±0.00064 1.00443±0.00062 0.99940±0.00061 1.00363±0.00058 0.99690±0.00063  
umet3a 0.99528±0.00062 0.99435±0.00062 0.99457±0.00065 0.99281±0.00055 0.99706±0.00058 0.99083±0.00062  
umet3b 0.99281±0.00060 0.99275±0.00058 0.99341±0.00058 0.99221±0.00061 0.99574±0.00059 0.98881±0.00058  
umet3c 0.99888±0.00061 0.99928±0.00062 0.99988±0.00062 0.99672±0.00062 0.99905±0.00062 0.99427±0.00064  
umet3d 0.99544±0.00063 0.99557±0.00060 0.99668±0.00061 0.99581±0.00065 0.99797±0.00066 0.99183±0.00062  
umet3e 1.00020±0.00064 0.99973±0.00063 1.00160±0.00060 0.99861±0.00064 1.00200±0.00059 0.99487±0.00062  
umet3f 1.0003±0.00067 1.00028±0.00062 1.00016±0.00059 0.99824±0.00061 1.0027±0.00065 0.99583±0.00065  
umet3g 1.00099±0.00063 1.00051±0.00065 1.00320±0.00061 0.99938±0.00065 1.00373±0.00058 0.99678±0.00066  
umet3h 1.00010±0.00057 1.00234±0.00061 1.00107±0.00064 0.99986±0.00062 1.00175±0.00063 0.99751±0.00064  
umet3i 1.00145±0.00060 1.00207±0.00063 1.00162±0.00060 0.99928±0.00063 1.00108±0.00063 0.99842±0.00060  
umet3j 1.00367±0.00064 1.00586±0.00063 1.00482±0.00061 1.00333±0.00064 1.00527±0.00062 1.00106±0.00059  
umet3k 1.00929±0.00065 1.01174±0.00059 1.00967±0.00061 1.00814±0.00059 1.00831±0.00057 1.00676±0.00066  
umet3l 0.99675±0.00062 0.99581±0.00058 1.00772±0.00065 0.99902±0.00061 1.00432±0.00060 1.00180±0.00061  
umet4a 1.00455±0.00071 1.00382±0.00074 1.00416±0.00073 1.00243±0.00074 1.00081±0.00071 1.00280±0.00074  
umet4b 1.00101±0.00072 0.99773±0.00071 0.99912±0.00071 0.99637±0.00077 0.99796±0.00074 0.99884±0.00071  
umet9a 0.99743±0.00064 0.99560±0.00062 0.99765±0.00060 0.99695±0.00060 0.99657±0.00068 0.99400±0.00060  
umet9b 0.99616±0.00061 0.99479±0.00062 0.99669±0.00065 0.99649±0.00062 0.99558±0.00060 0.99395±0.00060  
usol13a 1.00173±0.00038 0.99731±0.00039 0.99923±0.00039 0.99930±0.00037 0.99722±0.00037 0.99951±0.00037  
usol13b 1.00024±0.00041 0.99628±0.00040 0.99850±0.00039 0.99873±0.00042 0.99784±0.00040 0.99718±0.00040  
usol13c 0.99653±0.00043 0.99211±0.00043 0.99390±0.00041 0.99550±0.00040 0.99440±0.00042 0.99404±0.00043  
usol13d 0.99747±0.00041 0.99408±0.00045 0.99492±0.00044 0.99660±0.00044 0.99536±0.00041 0.99614±0.00042  
usol32 1.00082±0.00025 0.99666±0.00024 0.99890±0.00025 0.99893±0.00024 0.99742±0.00025 0.99894±0.00025  
umet8 0.99632±0.00054 0.99645±0.00061 0.99577±0.00059 0.99584±0.00057 0.99497±0.00059 0.99401±0.00054  
umet12 0.99977±0.00057 1.00007±0.00054 0.99814±0.00062 0.99779±0.00057 0.99733±0.00062 0.99639±0.00059  
umet15 0.99453±0.00055 0.99520±0.00059 0.99436±0.00057 0.99499±0.00052 0.99435±0.00057 0.99367±0.00059  
mixmet8-1 0.99477±0.00048 0.99607±0.00047 0.99526±0.00048 0.99584±0.00057 0.99497±0.00059 0.99401±0.00054  
mixmet8-7 1.02400±0.00016 1.02087±0.00018 1.01920±0.00018 1.02361±0.00020 1.02653±0.00017 1.01691±0.00017  
lst7-14 0.99894±0.00030 0.99479±0.00031 0.99726±0.00029 0.99831±0.00031 0.99756±0.00029 0.99449±0.00031  
lst7-30 0.99894±0.00030 0.99479±0.00031 0.99726±0.00029 0.99831±0.00031 0.99756±0.00029 0.99449±0.00031  
lst7-32 0.99786±0.00030 0.99492±0.00029 0.99559±0.00029 0.99694±0.00029 0.99587±0.00027 0.99389±0.00031  
lst7-36 1.00039±0.00026 0.99717±0.00028 0.99900±0.00027 0.99975±0.00027 0.99910±0.00026 0.99596±0.00027  
lst7-49 0.99887±0.00028 0.99566±0.00028 0.99721±0.00027 0.99844±0.00027 0.99752±0.00027 0.99429±0.00026  
mct2-pnl30 1.00157±0.00034 1.00000±0.00035 0.99939±0.00034 0.99825±0.00032 1.00103±0.00033 1.00170±0.00034  
mct2-pnl31 1.00374±0.00078 1.00357±0.00079 1.00296±0.00084 1.00315±0.00071 1.00482±0.00076 1.00558±0.00078  
mct2-pnl33 1.00846±0.00034 1.00733±0.00034 1.00694±0.00035 1.00455±0.00032 1.00514±0.00032 1.00878±0.00036  
mct2-pnl34 1.00831±0.00031 1.00686±0.00031 1.00239±0.00033 1.00101±0.00032 1.00161±0.00033 1.00409±0.00034  
mct2-pnl35 1.00756±0.00034 1.00697±0.00033 1.00572±0.00033 1.00395±0.00032 1.00431±0.00033 1.00816±0.00031  
mmf1 0.99888±0.00027 0.99905±0.00026 0.99993±0.00026 0.99961±0.00026 0.99848±0.00026 0.99773±0.00027  
mmf3 1.00056±0.00028 1.00068±0.00027 1.00083±0.00029 1.00104±0.00027 1.00039±0.00027 0.99943±0.00028  
Show more
2.3
Statistical analysis methods

The benchmark results were analyzed using the statistical parameters δk/σ, χ2, and |Δ|.

χ2 is a statistical parameter used to determine which evaluated nuclear data library is the most suitable for criticality calculations. |Δ| is the measure of the average difference between the calculated and benchmark keff eigenvalues. δk/σ indicates the consistency of the evaluated library and benchmark value in each benchmark case.

We use the 3σ rule to evaluate the calculation results of the benchmark. In statistics, the 3σ rule is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively. In empirical sciences, the 3σ rule expresses a conventional heuristic that nearly all values are taken to lie within three standard deviations of the mean, and thus it is empirically useful to treat 99.7% probability as near certainty. The results can be considered identical if the relative difference between the keff eigenvalues and the benchmark values was within the ±3σ interval. Note that we have bolded the values exceeding ±3σ in each benchmark to facilitate identification in the table.

|Δ| and χ2 are defined by |Δ|=i=1n|keff icalculationkeff ibenchmark|n, (1) χ2=i=1n((keff icalculationkeff ibenchmark)/σibenchmark)2n, (2) where n is the benchmark number, σbenchmark is the benchmark experimental uncertainty, keffcalculation and keffbenchmark are the simulated keff eigenvalue and benchmark keff eigenvalue, respectively, and i and n are the specific benchmark and total number of benchmark cases, respectively. δk/σ was used to provide a confidence level for the benchmarks. The relative difference δk and the relative combined statistical uncertainty σ are defined by δk=keffcalculationkeffbenchmarkkeffbenchmark, (3) σ=(σbenchmarkkeffbenchmark)2+(σcalculationkeffcalculation)2. (4) χ2 and |Δ| are lumped parameters that can describe the overall performance of the data library in the corresponding types of benchmarks. δk/σ can locate the performance of each data library in each benchmark.

3

Results and discussion

3.1
Comparison of the keff calculation results

The calculated values were compared with the reference value (Figs. 26). Most of the calculated values were close to the allowable error interval of the experimental value. The analysis and discussion of each benchmark type are as follows:

Fig. 2
(Color online) keff comparison for 233U assemblies.
pic
Fig. 3
(Color online) keff comparison for IEU assemblies.
pic
Fig. 4
keff comparison for HEU assemblies
pic
Fig. 5
keff comparison for 239Pu assemblies.
pic
Fig. 6
keff comparison for MIX assemblies.
pic

(1) For the 233U assemblies (Fig. 2), the calculated values in most cases were in good agreement with the experimental values. The calculated values of the benchmarks of 23umt4b deviated significantly from the experimental values.

(2) For the IEU assemblies (Fig. 3), the calculated values in most cases were in good agreement with the experimental values. For the ieumt4 benchmark, all the calculated results except JENDL-4.0 were overestimated compared to the experimental value, and, for the ieumt6 benchmark, all the calculated results were underestimated compared to the experimental value.

(3) For the HEU assemblies (Fig. 4), all calculated values were overestimated compared to the experimental values in the umet3k benchmark. For the umet9b, usol13c, umet8, and umet15 benchmarks, all calculated values were underestimated compared to the experimental values.

(4) For the 239Pu assemblies (Fig. 5), the calculated values in most cases were in good agreement with the experimental values. For the four benchmarks of the pusl cases (pusl11a, pusl11b, pusl11c, and pusl11d), the calculation results of CENDL-3.2 and CENDL-3.1 were overestimated compared to those of other data libraries. After comparing individual nuclides to each other, we found that 239Pu of CENDL-3.2 caused the overestimation of pusl11 series cases.

(5) For the MIX assemblies (Fig. 6), the calculated values in most cases were in good agreement with the experimental values. The calculated values of mixmet8-7 deviate greatly from the experimental values.

3.2
Discussion of the statistical results

The results of the three statistical parameters of each data library (Tables 26) were compared in this study. The analysis and discussion are as follows:

Table 2
The statistic metrics for 233U assemblies.
Case CENDL-3.1δk/σ CENDL-3.2 ENDF/B-VII.1 ENDF/B-VIII.0 JEFF-3.3 JENDL-4.0
23umt1 –0.11 1.82 0.52 –0.33 0.70 –0.67
23umt2a –2.84 -0.55 0.00 0.03 –0.39 –1.22
23umt2b –1.69 0.90 –0.58 1.50 1.45 0.25
23umt3a –1.70 0.12 –0.58 0.10 1.89 –0.33
23umt3b –1.05 –0.03 0.12 0.28 1.77 –2.28
23umt4a 5.57 0.37 –1.33 –1.03 0.41 1.28
23umt4b 5.64 4.84 5.75 5.26 5.76 6.38
23umt5a 3.10 –1.58 –1.11 –0.60 –0.99 –1.15
23umt5b –4.07 –1.82 –1.38 –0.87 –1.26 –1.68
23umt6 –0.55 –0.63 –0.62 –0.39 2.31 –1.46
23usl1a 1.03 0.41 0.59 0.14 0.67 –0.74
23usl1b 0.85 0.18 0.52 –0.14 0.34 –0.83
23usl1c 0.55 –0.16 0.26 –0.10 0.29 –0.94
23usl1d 0.79 0.18 0.55 –0.01 0.35 –0.75
23usl1e 0.59 0.13 0.14 –0.25 0.44 –1.04
23usl8 0.24 –0.25 0.24 –0.29 0.53 –1.30
flat23 0.23 1.16 0.27 2.44 4.25 –0.67
χ2  14.88 1.65 2.71 3.29 3.22 1.85
|Δ|  351.8 142.5 144.3 115.9 196.9 225.4
Show more
Table 3
The statistic metrics for IEU assemblies.
Case CENDL-3.1δk/σ CENDL-3.2 ENDF/B-VII.1 ENDF/B-VIII.0 JEFF-3.3 JENDL-4.0
lst7-14 3.02 –1.39 1.24 2.34 1.56 –1.70
lst7-30 1.74 –2.65 –0.04 1.07 0.28 –2.97
lst7-32 –0.61 3.45 –2.80 –1.50 –2.55 4.42
lst7-36 1.41 –1.44 0.18 0.84 0.27 –2.51
lst7-49 0.50 –2.33 –0.97 0.12 –0.69 3.56
ieumt1a 1.00 1.27 1.91 –0.23 0.76 –1.88
ieumt1b 1.45 1.13 0.79 –0.21 1.00 –2.80
ieumt1c 4.40 0.14 2.92 –0.48 0.92 5.26
ieumt1d 1.53 0.79 2.19 –2.04 0.03 7.03
ieumt2 –0.60 –0.38 –0.25 –1.28 –1.25 3.79
ieumt3 0.68 0.77 1.44 –0.56 0.82 –2.23
ieumt4 2.74 2.20 2.45 1.73 1.77 –0.43
ieumt5 0.07 2.13 0.60 0.20 0.22 –2.45
ieumt6 –0.79 –1.86 –1.36 –2.55 –2.80 4.21
χ2  5.98 3.61 4.28 2.43 2.02 21.26
|Δ|  202.1 239.5 198.9 179.0 185.9 449.7
Show more
Table 4
The statistic metrics for HEU assemblies.
Case CENDL-3.1δk/σ CENDL-3.2 ENDF/B-VII.1 ENDF/B-VIII.0 JEFF-3.3 JENDL-4.0
umet11 0.57 –0.13 –0.83 –1.41 –0.95 –2.53
bigten1 0.67 0.16 0.74 0.22 0.87 –1.92
bigten2 0.04 –0.71 0.09 0.15 0.31 –2.75
umet13 –1.93 –0.22 –0.44 –0.38 –1.68 3.22
umet14 –1.25 –0.68 –0.27 –1.67 –0.40 3.06
umet18 –0.25 –0.57 –0.17 –0.09 0.15 –1.89
umet19 3.01 2.53 2.20 1.72 2.23 0.28
umet1ns 0.93 –0.15 0.08 0.65 0.24 –0.99
 umet1ss 0.85 0.56 0.37 0.03 0.74 –1.70
umet20 0.44 0.29 0.00 –0.15 0.20 –0.98
umet21 –1.78 0.25 –0.67 –0.31 –0.88 –2.37
umet22 –1.02 –0.30 –1.48 –1.09 –1.29 –2.63
umet28 0.68 0.34 1.45 –0.20 1.19 –1.01
umet3a –0.94 –1.12 –1.08 –1.43 –0.58 –1.82
umet3b –1.43 –1.44 –1.31 –1.55 –0.85 –2.22
umet3c –0.22 –0.14 –0.02 –0.65 –0.19 –1.14
umet3d –1.49 –1.45 –1.08 –1.37 –0.66 –2.67
umet3e 0.07 –0.09 0.52 –0.45 0.65 –1.67
umet3f 0.10 0.09 0.05 –0.57 0.88 –1.36
umet3g 0.32 0.17 1.05 –0.20 1.22 –1.05
umet3h 0.02 0.46 0.21 –0.03 0.35 –0.49
umet3i 0.29 0.41 0.32 –0.14 0.21 –0.31
umet3j 0.73 1.16 0.96 0.66 1.05 0.21
umet3k 1.84 2.33 1.92 1.62 1.65 1.34
umet3l –1.06 –1.37 2.51 –0.32 1.41 0.59
umet4a 2.07 1.46 1.74 0.34 –0.97 0.64
umet4b 0.81 –2.96 –1.36 4.29 –2.62 –1.68
umet9a –1.09 –2.22 –0.96 –1.40 –1.60 3.23
umet9b –1.88 –2.72 –1.54 –1.67 –2.25 3.26
usol13a 0.20 –1.48 –0.75 –0.72 –1.51 –0.64
usol13b –0.13 –1.22 –0.61 –0.54 –0.79 –0.97
usol13c –1.20 –2.42 –1.93 –1.49 –1.79 –1.89
usol13d –0.78 –1.71 –1.48 –1.02 –1.36 –1.15
usol32 –0.26 –1.85 –0.99 –0.98 –1.56 –0.98
umet8 –1.53 –1.43 –1.84 –1.81 –2.31 –2.90
umet12 0.30 0.46 –0.56 –0.75 –0.98 –1.49
umet15 –2.84 –2.45 –2.93 –2.60 –2.93 3.30
χ2  1.68 2.53 1.75 2.86 2.31 4.23
|Δ|  250.1 299.5 279.5 245.9 293. 8 432
Show more
Table 5
The statistic metrics for 239Pu assemblies.
Case CENDL-3.1δk/σ CENDL-3.2 ENDF/B-VII.1 ENDF/B-VIII.0 JEFF-3.3 JENDL-4.0
pumet1 1.22 1.05 0.15 0.04 –0.23 –0.58
pumet10 –0.78 –0.80 –0.18 –1.07 0.01 –1.96
pumet11 1.90 0.76 –0.38 –0.37 0.45 1.12
pumet18 –0.48 –1.14 0.08 –0.56 -0.64 –0.78
pumet2 1.12 1.46 0.24 0.61 1.04 –0.99
pumet20 –2.04 –1.06 –0.64 –1.48 0.07 –1.74
pumet22 0.28 –0.02 –0.35 –0.65 –1.05 –1.73
pumet23 0.00 0.47 –0.31 –1.36 0.01 –2.12
pumet24 1.75 1.72 0.59 0.61 0.48 0.11
pumet25 –1.46 0.11 –0.04 0.27 –1.62 –1.67
pumet26 –2.79 0.17 –0.13 0.31 –0.97 –2.07
pumet5 0.17 1.15 1.22 –0.36 0.78 1.39
pumet6 –0.40 –0.55 –0.01 –0.27 1.15 –0.17
pumet8a 1.21 0.83 –0.63 –0.81 –0.65 –0.83
pumet8b 4.25 3.41 –2.55 4.01 3.74 4.13
pumet9 1.75 3.76 2.08 1.84 1.58 0.66
pumt21b –2.14 –1.91 –2.35 3.08 –2.50 –2.16
pusl11a 2.08 1.18 –0.81 –2.04 –1.72 –0.76
pusl11b 2.95 2.53 0.28 –0.91 –0.76 0.15
pusl11c 4.41 3.65 1.01 –0.02 0.48 1.26
pusl11d 5.24 4.67 2.98 0.59 1.54 2.19
χ2  6.50 4.75 1.55 2.71 2.49 3.72
|Δ|  592.3 503.2 209.6 261.9 272.2. 333.3
Show more
Table 6
The statistic metrics for MIX assemblies.
Case CENDL-3.1δk/σ CENDL-3.2 ENDF/B-VII.1 ENDF/B-VIII.0 JEFF-3.3 JENDL-4.0
mct2-pnl30 –0.14 –0.40 –0.50 –0.69 –0.23 –0.12
mixmet1 –0.56 –0.94 0.05 –0.64 –0.84 –1.33
mixmet3 0.35 0.84 0.89 0.91 0.58 –0.79
mixmet8-1 0.45 0.65 0.52 0.62 0.48 0.32
mixmet8-7 8.33 7.09 6.42 8.17 9.33 5.52
mct2-pnl31 0.59 0.56 0.43 0.47 0.82 0.98
mct2-pnl33 2.83 2.31 2.12 1.01 1.28 2.98
mct2-pnl34 1.78 1.21 –0.55 –1.10 –0.86 0.11
mct2-pnl35 1.70 1.49 1.03 0.38 0.52 1.92
mmf1 –0.69 –0.59 –0.04 –0.24 –0.94 –1.40
mmf3 0.78 0.85 0.94 1.07 0.67 0.08
χ2  7.94 5.83 4.60 6.74 8.62 4.53
|Δ|  423.6 404.0 332.1 378.5 392. 4 356.7
Show more

(1) For the 233U assemblies (Table 2), CENDL-3.1 exceeded 3σ in the four benchmarks of 23umt4a, 23umt4b, 23umt5a, and 23umt5b. JEFF-3.3 exceeded 3σ in the flat23 benchmark. For the 23umt4b benchmark, all databases exceeded 3σ. By analyzing the values of χ2 and |Δ|, it can be concluded that CENDL-3.2 offers significant improvement compared to CENDL-3.1.

(2) For the IEU assemblies (Table 3), CENDL-3.1 exceeded 3σ in the benchmarks of lst7-14 and ieumt1c. Six benchmarks exceeded 3σ in the JENDL-4.0 library. Analysis of the values of χ2 and |Δ| showed that ENDFB-VIII.0 and JEFF-3.3 performed better than the other libraries.

(3) For the HEU assemblies (Table 4), CENDL-3.1 exceeded 3σ in the benchmarks of umet19 and ieumt1c. JEFF-3.3 exceeded 3σ in the umet4b benchmark. Five benchmarks exceeded 3σ in the JENDL-4.0 library. Analysis of the values of χ2 and |Δ| showed that CENDL-3.2 is not significantly improved compared to CENDL-3.1.

(4) For the 239Pu assemblies (Table 5), CENDL-3.1, and CENDL-3.2 both exceeded 3σ in the benchmarks of pusl11c and pusl11d. For the pumet8b benchmark, except for ENDF/B-VII.1, all other data libraries exceeded 3σ. Analyzing the values of χ2 and |Δ| showed that the ENDF/B-VII.1 library performs better than the other data libraries.

(5) For the MIX assemblies (Table 6), all libraries exceeded 3σ in the benchmark mixmet8-7. The ENDF/B-VII.1 library performs better than the other data libraries. Analysis of the values of χ2 and |Δ| shows that CENDL-3.2 performs better than CENDL-3.1.

Based on the calculated values of all benchmarks, we used chi-square and average errors to analyze the overall performance of all data libraries in criticality calculations (Table 7). From the perspective of the calculation results of the new and old updates of the library, CENDL-3.2 has smaller chi-square and average deviations for all benchmarks than CENDL-3.1, which reflects that, for the type of benchmarks involved, CENDL-3.2 is superior to the previous version. The average deviation of ENDF/B-VIII.0 for all benchmarks is similar to that of ENDF/B-VII.1, both being near 230, and the chi-square is larger than that of ENDF/B-VII.1. By counting the number of benchmarks exceeding 3σ, it can be seen that the number of benchmarks exceeding 3σ for JENDL-4.0 and CENDL-3.1 is >10 and the number of benchmarks exceeding 3σ for ENDF/B-VIII.0 and JEFF-3.3 is ~5.

Table 7
The comparison of <|Δ|> values (in pcm) and χ2 for total benchmark cases.
Metrics CENDL-3.2 CENDL-3.1 ENDF/B-VIII.0 ENDF/B-VII.1 JEFF-3.3 JENDL-4.0
χ2  3.59 5.19 3.25 2.67 3.61 6.71
|Δ|  320.6 347.3 232.3 237.12 272.4 374.8
Numbers exceed 3σ  7 11 5 2 4 13
Show more

In general, based on the above 100 criticality benchmark calculation results, we can conclude that the criticality calculation performance of CENDL-3.2 is better than that of CENDL-3.1. Analysis of the chi-square and average deviations and the number of benchmarks exceeding 3σ demonstrates that the overall criticality calculation performance of ENDF/B-VIII.0 and JEFF3.3 is equivalent. The ENDF/B-VII.1 library performed the best. Compared with the JEFF-3.3 and ENDF/B-VIII.0 libraries, CENDL3.2 performs better in the calculation of 233U devices and performs poorly in the pusl11 series case calculation of Pu devices, and thus further improvement is needed.

Compared with CENDL-3.1, CENDL-3.2 [1] has more materials (272), of which the data of 134 nuclides are new or updated evaluations in the energy region of 10−5 eV to 20 MeV. Data for most of the key nuclides in nuclear applications (e.g., U, Pu, Th, and Fe) have been revised. Covariance data for the main reactions were added for 70 fission product nuclides in CENDL-3.2. Compared with ENDF/B-VII.1, ENDF/B-VIII.0 [2] employs major changes for neutron reactions on the important isotopes 1H, 16O, 56Fe, 235U, 238U, and 239Pu and other nuclides that impact simulations of nuclear criticality. The number of materials increased from 423 to 557. In addition, neutron reactions on light nuclei, structural materials, minor actinides, fission energy release, decay data, and charged particle reactions and thermal neutron scattering data have been notably updated.

Therefore, we expect that the criticality calculation performance of ENDF/B-VIII.0 is better than that of ENDF/B-VII.1. However, for different benchmark experiments, the calculation results of the new evaluated library ENDF/B-VIII.0 are not all better than those of the previous version, such as the three benchmarks of pusl11a, pusl11b, and pumet21b in the Pu assemblies. In the criticality calculation of these three benchmarks, compared with the experimental value, the keff results of ENDF/B-VIII.0 are 200–500 pcm smaller than the calculation results of ENDF/B-VII.1. This is also one of the goals of our work, that is, to find benchmarks that are not sensitive to the newly evaluated library and provide a reference for subsequent evaluation work. The calculation results of Table 7 list only the statistical performance of the current benchmark cases. The results in Table 7 cannot explain that the calculation result of ENDF/B-VIII.0 must be better than the calculation result of ENDF/B-VII.1. This requires a specific analysis based on specific issues.

3.3
Discussion of the anomalous benchmarks

From the discussion in Sect. 3.2, the δk/σ value of all data libraries exceeded 3σ in the three benchmarks of 23umt4b, pumet8b, and mixmet8-7, which indicates that there is a large deviation between the experimental and calculated values. This question needs to be addressed separately.

The 23umt4b (u233-fast-met-004) benchmark is a spherical device, divided into two layers: The inner layer contains 233U fuel and the outer layer is a reflective layer dominated by tungsten. The pumet8b (pu-met-fast-008b) benchmark is a spherical device, divided into two layers: The inner layer contains Pu fuel and the outer layer is a reflection layer of 232Th. The mixmet8-7 (mix-met-inter-008-case-7) benchmark is based on a k measurement. The configuration consists of a rectangular plate with three rectangular normal-uranium plates above it and the other three below it. The plates were enclosed on all sides of a rectangular steel sheath.

Physically, keff is mainly dominated by fission nuclides, but the reflective layer also has an important influence on keff. The average deviation between the pumet8b and 23umt4b benchmarks and the experimental values was ~600 pcm. In fact, there are benchmarks that have a deviation of >600 pcm from the experimental value, such as the JEFF-3.3calculation result for pumt21b. For the mixmet8-7 benchmark, the keff deviation between the calculated value of all libraries and the experimental value was within 1000–2000 pcm. In addition, the keff results of the reference values from ENDF/B-VII.0 and ENDF/B-VI also deviate from the experimental values by >1000 pcm. The keff result of MCNP6.2 based on ENDF/B-VII.1, found in the LA-UR-17-25040 report [19], is 1.0192, which has a deviation of 1620 pcm from the experimental value. At present, no report has been published to explain the reason for the large deviation between the calculated and experimental values for mixmet8-7, and further research is needed.

From the point of view of nuclear data, because the benchmark involves many nuclides, it is impossible to determine which nuclides that have a greater impact on keff through qualitative analysis. The commonly used method is to determine the important reaction channels of key nuclides that have a greater impact on keff through sensitivity and uncertainty analyses. This part of the work has not been done yet, and the sensitivity and uncertainty analysis will be further studied in our future work.

4

Conclusion

A comprehensive suite of 100 criticality benchmarks has been established for validating nuclear data, including CENDL-3.2, ENDF/B-VIII.0, JEFF3.3, JENDL-4.0, CENDL-3.1, and ENDF/B-VII.1. The suite contains benchmarks for five major categories: critical assemblies utilizing 233U, IEU, HEU, 239Pu, and MIX assemblies.

(1) In these 100 calculation benchmark cases, the calculated values for most of the cases were in good agreement with the experimental values.

(2) Considering all devices comprehensively and analyzing the values of χ2 and |Δ| demonstrates that the overall criticality calculation performance of ENDF/B-VIII.0 and JEFF3.3 is basically equivalent. The ENDF/B-VII.1 library offers the best performance in criticality calculations. In addition, CENDL-3.2 is improved compared with the CENDL-3.1 library and is better than JENDL-4.0. CENDL-3.2 performed better in the calculations of 233U assemblies. However, for the pusl11 series of Pu devices, CENDL-3.2 has poor performance in criticality calculations and needs further improvement.

(3) The δk/σ values of most benchmark cases in different data libraries were in the 3σ interval with a confidence of 99.7%. A few benchmark cases (e.g., 23umet4b, pumet8b, and mixmet8-7) have δk/σ values higher than the 3σ interval for all libraries. The reason for the large deviation between the calculated value of mixmet8-7 and the experimental value requires further study.

References
1. Z. Ge, R. Xu, H. Wu et al.,

CENDL-3.2: The new version of Chinese general purpose evaluated nuclear data library

. EPJ Web of Conferences 239, 09001 (2020). doi: 10.1051/epjconf/202023909001
Baidu ScholarGoogle Scholar
2. D.A. Brown, M.B. Chadwick, R. Capote et al.,

ENDF/B-VIII.0: The 8 th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections

, New Standards and Thermal Scattering Data. NDS 148, 1-142 (2018). doi: 10.1016/j.nds.2011.11.002
Baidu ScholarGoogle Scholar
3. M.B. Chadwick, R. Capote, A. Trkov et al.,

CIELO Collaboration Summary Results: International Evaluations of Neutron Reactions on Uranium, Plutonium, Iron, Oxygen and Hydrogen

. NDS 148, 189-213 (2018). doi: 10.1016/j.nds.2018.02.003
Baidu ScholarGoogle Scholar
4. A.J.M. Plompen, O. Cabellos, C. De Saint Jean et al.,

The joint evaluated fission and fusion nuclear data library, JEFF-3.3

. Europ. Phys. J. A 56, (2020). doi: 10.1140/epja/s10050-020-00141-9
Baidu ScholarGoogle Scholar
5. K. Shibata, O. Iwamoto, T. Nakagawa et al.,

JENDL-4.0: A New Library for Nuclear Science and Engineering

. J. Nucl. Sci. Technol. 48, 1-30 (2012). doi: 10.1080/18811248.2011.9711675
Baidu ScholarGoogle Scholar
6. X.-R. Hu, G.-T. Fan, W. Jiang et al.,

Measurements of the Au-197(n, gamma) cross section up to 100 keV at the CSNS Back-n facility

. Nucl. Sci. Tech. 32, 101 (2021). doi: 10.1007/s41365-021-00931-w
Baidu ScholarGoogle Scholar
7. Q. Wang, B.-J. Chen, Q. Zhang et al.,

Cross-section measurement of (n,2n) reactions for Nd isotopes induced by 14 MeV neutrons

. Nucl. Sci. Tech. 30, 8 (2019). doi: 10.1007/s41365-018-0535-5
Baidu ScholarGoogle Scholar
8. J.L. Conlin, A.C. Kahler, A.P. Mccartney,

Open Source Release of NJOY2016 and NJOY21

. Trans Am Nucl Soc; 2017.
Baidu ScholarGoogle Scholar
9. T. Zu, J. Xu, Y. Tang et al.,

NECP-Atlas: A new nuclear data processing code

. Ann. Nucl. Energy 123, 153-61 (2019). doi: 10.1016/j.anucene.2018.09.016
Baidu ScholarGoogle Scholar
10. D.H. Kim, C.-S. Gil, Y.-O. Lee,

Current Status of ACE Format Libraries for MCNP at Nuclear Data Center of KAERI

. J. Radiat. Prot. Research 41, 191-5 (2016). doi: 10.14407/jrpr.2016.41.3.191
Baidu ScholarGoogle Scholar
11. F.B. Brown. MCNP5 Utility Programs. (Los Alamos National Laboratory, New Mexico, 2008).
12. J.B. Briggs, L. Scott, A. Nouri,

The international criticality safety benchmark evaluation project

. Nucl. Sci. Eng. 145, 1-10 (2003). doi: 10.13182/nse03-14
Baidu ScholarGoogle Scholar
13. M. Cornock,

Benchmarking of ENDF/B-VII.1 and JENDL-4.0 in the fast neutron range

. NDS 118, 430-2 (2014). doi: 10.1016/j.nds.2014.04.098
Baidu ScholarGoogle Scholar
14. L. Zheng, S. Huang, K. Wang,

Criticality benchmarking of ENDF/B-Ⅷ.0 and JEFF-3.3 neutron data libraries with RMC code

. Nucl. Eng. Technol. 52, 1917-25 (2020). doi: 10.1016/j.net.2020.02.022
Baidu ScholarGoogle Scholar
15. Z.G. Ge, Z.X. Zhao, H.H. Xia et al.,

The Updated Vversion of Chinese Evaluated Nuclear Data Library (CENDL-3.1)

. J. Korean Phys. Soc. 59, 1052-6 (2011). doi: 10.3938/jkps.59.1052
Baidu ScholarGoogle Scholar
16. M.B. Chadwick, M. Herman, P. Obložinský et al.,

ENDF/B-VII.1 nuclear data for science and technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

. NDS 112, 2887-996 (2011). doi: 10.1016/j.nds.2011.11.002
Baidu ScholarGoogle Scholar
17. S.C. Frankle, A Suite of Criticality Benchmarks for Validating Nuclear Data. (Los Alamos National Laboratory, New Mexico, 1999).
18. R.D. Mosteller, An Expanded Criticality Validation Suite for MCNP. (Los Alamos National Laboratory, New Mexico, 2010).
19. F. Brown, M. Rising, J. Alwin, Verification of MCNP6.2 for Nuclear Criticality Safety Applications. (Los Alamos National Laboratory, New Mexico, 2017).