logo

α decay in extreme laser fields within a deformed Gamow-like model

NUCLEAR PHYSICS AND INTERDISCIPLINARY RESEARCH

α decay in extreme laser fields within a deformed Gamow-like model

Qiong Xiao
Jun-Hao Cheng
Yang-Yang Xu
You-Tian Zou
Jun-Gang Deng
Tong-Pu Yu
Nuclear Science and TechniquesVol.35, No.2Article number 27Published in print Feb 2024Available online 29 Feb 2024
55905

In this study, the effect of extreme laser fields on the α decay process of ground-state even–even nuclei was investigated. Using the deformed Gamow-like model, we found that state-of-the-art lasers can cause a slight change in the α decay penetration probability of most nuclei. In addition, we studied the correlation between the rate of change of the α decay penetration probability and angle between the directions of the laser electric field and α particle emission for different nuclei. Based on this correlation, the average effect of extreme laser fields on the half-life of many nuclei with arbitrary α particle emission angles was calculated. The calculations show that the laser suppression and promotion effects on the α decay penetration probability of the nuclei population with completely random α particle-emission directions are not completely canceled. The remainder led to a change in the average penetration probability of the nuclei. Furthermore, the possibility of achieving a higher average rate of change by altering the spatial shape of the laser is explored. We conclude that circularly polarized lasers may be helpful in future experiments to achieve a more significant average rate of change of the α decay half-life of the nuclei population.

α decayDeformed Gamow-like modelHalf-livesExtreme laser fieldPenetration probability
1

Introduction

α decay is highly significant in nuclear physics because of the information it can provide regarding the nuclear structure and stability [1-4]. This process involves the emission of an α particle (helium nucleus) by an unstable nucleus. Early interpretations of this process were provided by Gamow, Condon, and Gurney [5], who viewed it as a quantum tunneling effect. This is one of the earliest applications of quantum mechanics in nuclear physics [5, 6]. Recently, significant advancements have been made in both the theory and experimentation of α decay. Theoretically, α-decay shares a similar theory of barrier penetration with spontaneous fission, proton radioactivity, and heavy ion emission [7-10], which makes α-decay a critical tool for studying nuclear structures, e.g., from the barrier tunneling theory to the investigation of superheavy nuclei (SHN) [11-16], from the discovery of the nucleus by α scattering to the Geiger-Nuttall law [17, 18]. Experimentally, α-decay spectroscopy of heavy, superheavy, and neutron-deficient nuclei has become an important basis for the synthesis and identification of new nuclides formed in nuclear reactions [19-21].Moreover, in astrophysics, studying α decay processes is crucial for understanding popular topics such as the chronology of the solar system [22] and stellar nucleosynthesis [23].

Another important assumption in the study of α decay is that emitted α particles are formed on the surface of the nucleus and eventually pass through the potential barrier through constant collisions with the potential barrier [24, 25]. The formation, collision, and penetration processes of α decay involve the complicated structure of many-body quantum systems. To better explain the α decay process, many models and formulas have been developed, such as the generalized liquid drop model [24, 26-28], Gamow-like model [29-31], cluster model [32-34], the two-potential approach [35-37], the deformed version of the density-dependent cluster model (DDCM) with microscopic double-folding potentials [38-40], and empirical formulas [41-46], which reproduce the α decay half-life experimental data to some extent. However, because of the strong nucleon–nucleon interactions in the dense nuclear structure, previous studies of α decay have mainly observed and analyzed the behavior of the nucleus. Directly interfering with the natural decay of nuclei using conventional methods is challenging. Consequently, more effective tools are required to modulate the α decay of nuclei to obtain more information on the nuclear structure and a more comprehensive range of nuclei applications.

Since the invention of the chirped-pulse amplification (CPA) technology by Gerard Mourou and Donna Strickland [47], rapidly evolving laser technology has demonstrated its irreplaceable role in many fields such as nuclear physics, inertial confinement fusion, fusion ignition, medicine, and electron-positron pair production [48-53]. To date, significant progress has been made in the development of ultrashort, ultraintense laser pulses with pulse widths of less than 100 fs and intensities of up to 1023W/cm2 in a laboratory [54]. Moreover, the extreme light infrastructure (ELI) being constructed in Europe is expected to increase the laser intensity by one to two orders of magnitude [55, 56], providing a new platform for studying the interaction between lasers and matter in extreme laser field environments and enhancing laser-driven nuclear physics research.

In atomic-molecular physics, the interaction of lasers with matter is a well-established subject. The nonlinear reactions of molecules or atoms caused by laser fields constitute the research discipline of nonlinear optics [57]. However, in the microscopic field of nuclear physics, the direct reaction between the laser and nuclei has rarely been studied because the typical nuclear energy level is on the order of Mega-electron volts, and the energy of laser photons is much smaller than this value [58]. This gap has narrowed with the rapid developments of the laser technology. When the laser intensity reaches 1024W/cm2, the corresponding electric field strength is approximately equal to the Coulomb field strength of the nucleus near 100 fm. This implies that a direct interaction of the laser with the nucleus is possible [59-62]. Recently, extensive research has been conducted to study the direct effects of lasers on nuclei, e.g., nuclear excitation [63], refractive scattering of loosely bound nuclei [64], α decay [65-71], proton radioactivity [55, 72], nuclear fusion [73], nuclear fission [58], and modification of heavy-ion elastic-scattering differential cross sections [74]. This implies that an extreme laser-field environment offers a new tool for studying α decay. The most intriguing question is whether intense lasers can accelerate α decay, which, if feasible, would open up new possibilities for nuclear waste disposal. Another ongoing study of ours [71] explores the key factors of laser effects on the rate of change of the penetration probability of α decay of individual nuclei, that is, the properties of the nucleus and laser. However, in real applications where nuclei often appear as a population, the effect of lasers on a randomly emitted population of nuclei must be studied.

For a direct laser-nucleus interaction, an electric dipole term is introduced in the nuclear Hamiltonian, which is closely related to the angle ψ between the direction of the laser electric field and that of the α particle emission. Considering the nuclear deformation to study the laser effect on α decay is essential. In addition, the introduction of a new interaction term may be affected by the adjustable parameters. Therefore, more accurate results may be obtained using a model with minimal adjustable parameters to calculate the laser effect on α decay. In this study, we investigate the effect of an extreme laser field on the α decay of ground-state even–even nuclei based on the deformed Gamow-like model, which has only one adjustable parameter, radius constant r0. Moreover, we study the relationship between ψ and the rate of change of the α decay half-life for different nuclei. Furthermore, the average effect of the extreme laser on the nuclei population’s α decay penetration probability with arbitrary α particle-emission angles is calculated, and the possibility of obtaining a more effective average rate of change by changing the spatial shape of the laser is discussed.

The remainder of this paper is organized as follows: Section 2 introduces the deformed Gamow-like model and direct laser-nucleus interactions in detail. Section 3 presents the results and discussions. Section 4 presents the summary.

2

Theoretical framework

2.1
The deformed Gamow-like model

In the deformed Gamow-like model, the total penetration probability P is obtained by averaging P(θ) in all directions [38] P=120πP(θ)sinθdθ, (1) where θ denotes the orientation angle of the symmetry axis of the daughter nucleus with respect to the emitted α particles. The calculation of P(θ) in each direction is similar to that of the Gamow-like model [29, 30]; however, the Coulomb potential used for the calculations is more complex. P(θ) can be expressed as follows: P(θ)=exp[2Rin(θ)Rout(θ)2μ(V(r,θ)Eα)dr], (2) where denotes the reduced Planck constant, r is the separation between the mass center of the daughter nucleus and that of the emitted α particle, and the lower limit of integration Rin(θ) is the radius of the square well, and can be expressed as Rin(θ)=r0Ad13(1+β2Y20(θ)+β4Y40(θ)+β6Y60(θ))+r0Aα13, (3) The adjustable parameter radius constant r0=1.17 fm was obtained from. [75]. Ad and represent the mass numbers of daughter nucleus and α particle, respectively. β2, β4, and β6 are the calculated quadrupole, hexadecapole, and hexacontatetrapole deformation of the nuclei, respectively. The upper limit of the integration Rout(θ) is the outer turning point, which can be obtained by V(Rout)=Eα, (4) where Eα=QαAAαA represents the kinetic energy of the emitted α particles. and A are the decay energy and mass of the parent nucleus, respectively.

The total potential between the emitted α particle and daughter nucleus V(r,θ) can be expressed as V(r,θ)={V0,0rRin(θ),VC(r,θ)+Vl(r),r>Rin(θ), (5) where V0 is the potential well depth and Vl(r) is the centrifugal potential, which can be expressed as Vl(r)=l(l+1)22μr2, (6) where μ=mdmα(md+mα) is the reduced mass and md and represent the masses of the daughter nucleus and emitted α particle, respectively. l is the orbital angular momentum of the emitted α-particle. In this study, we only focused on the α decay of the ground-state even–even nuclei; thus, l=0 was considered in the calculations. The Coulomb potential VC(r,θ) was calculated using the double-folding model [38-40], which is expressed as: VC(r,θ)=ρ1(r1)ρ2(r2)|rr2+r1|dr1dr2, (7) where r1 and ρ1 represent the radius vector and the density distribution of the daughter nucleus, respectively. r2 and ρ2 represent the radius vector and density distribution of the emitted α particle, respectively. Simplified appropriately by the Fourier transform [76-78], the Coulomb potential can be approximated as VC(r,θ)=VC(0)(r,θ)+VC(1)(r,θ)+VC(2)(r,θ), (8) where VC(0)(r,θ), VC(1)(r,θ) and VC(2)(r,θ) represent the bare Coulomb interactions, linear Coulomb coupling, and second-order Coulomb coupling, respectively [76].

In the deformed Gamow-like model, the even–even nuclei α decay half-lives are expressed as T12=ln2λ, (9) where decay constant λ depends on the α-particle-formation probability , collision frequency ν, and penetration probability P [46]. λ=SανP, (10) =0.5 is obtained from [75]. ν can be calculated using the oscillation frequency ωα [79] ν=ωα/2π=(2nr+l+32)2πμRn2=(G+32)1.2πμR02, (11) where Rn=3/5R0 denotes the root-mean-square radius of the nucleus, with the radius of the parent nucleus R0=1.28A1/30.76+0.8A1/3. Moreover, G=2nr+l is the main quantum number [80] and nr is the radial quantum number of the emitted particle.

2.2
Laser–nucleus interaction

In an extreme laser field environment, the total potential V(r,θ,t,ψ) between the emitted α particle and daughter nucleus can be rewritten as V(r,θ,t,ψ)={V0,0rRin(θ),VC(r,θ)+Vl(r)+Vi(r,t,ψ),r>Rin(θ), (12) where the electric dipole term Vi(r,t,ψ) is expressed as [66] Vi(r,t,ψ)=ZeffrE(t)=ZeffrE(t)cosψ, (13) where Zeff is the effective charge, which represents the tendency of the laser electric field to separate the emitted α-particle. This can be expressed as Zeff=ZαAdZdAαAd+Aα, (14) where Zd and are the proton numbers of the daughter nucleus and emitted α particle, respectively. If the daughter nucleus and emitted α particle have the same charge-to-mass ratio, they move cooperatively in the laser field, and the laser electric field does not separate the two particles.

In this study, the laser electric field was obtained using E(t)=E0f(t)sin(ωt), (15) where ω and E0 represent the angular frequency and peak of the laser electric field, respectively. The peak of the laser electric field intensity E0 is related to the peak of the laser intensity I0, which is expressed as [55] E0[V cm1]=(2I0cϵ0)1/2=27.44(I0[W cm2])1/2, (16) where c and ϵ0 represent the speed of light in vacuum and the permittivity of free space, respectively. A high-energy laser pulse has a Gaussian shape [54, 81], which can be expressed as f(t)=exp(t2τ2), (17) where the pulse width of the envelope is τ=x T0 and T0 is the pulse period.

In an extreme laser field environment, the kinetic energy of the emitted α particle can be altered by the laser electric field. The change in kinetic energy is related to the laser electric field, and can be rewritten as Eαi=QαAAαA+eE(t)Rin(θ)cosψ. (18) Figure 1 is the schematic diagram depicting the total potential V with and without considering the laser electric field. The blue and red curves represent the total potential V(r, θ) without considering the laser electric field and the total potential V(r,θ,t,ψ) with the laser electric field, respectively. Rout and correspond to the outer turning point and α decay energy, respectively, without considering the laser. Routi and Eαi are the outer turning point and α-decay energy, respectively, when the laser is considered. Fig. 1 shows that the laser electric field directly affects the emitted α kinetic energy and total potential, thus changing the position of the classical turning point. The equation for calculating the penetration probability P is an exponential function sensitive to the kinetic energy of the emitted particle and position of the outer turning point. Therefore, the rate of change of the penetration probability P depends on the change in the kinetic energy of the emitted particle and change in the position of the outer turning point. This figure shows that the magnitudes of the two changes are related to the α decay process and laser intensity; therefore, the change in the penetration probability depends on the energy of the α particle and intensity of the laser field.

Fig. 1
(Color online) Schematic diagram of the total potential V with and without considering the laser electric field
pic
3

Results and discussion

In this study, we first discuss the effect of the magnetic field of the laser on α decay. The kinetic energy of a typical emitted α particle is approximately a few Mega-electron volts, which means that the speed of the emitted α particle is much lower than the speed of light in vacuum. Compared to the electric-field part of the laser, the magnetic field of the laser has a minor effect and can be disregarded. During α decay, the emitted α particle oscillates within the parent nucleus at a high frequency and ultimately escapes the quantum-tunneling effect. The size of the parent nucleus is on the order of 1 fm, and the oscillation frequency of the emitted α particles is estimated to be approximately 1022 Hz. Considering that the length of the tunneling process is less than 100 fm, the time required to emit α particles is less than 10-20 s. This timescale is much smaller than the currently achievable highest peak-intensity laser-pulse period [58]. Therefore, we treat the laser field as quasi-static, that is, the laser field remains constant throughout α decay.

The rate of change of the α decay half-life δ T is used to define the effect of the laser electric field on the α decay half-life and is written as δT=T(E)T(E=0)T(E=0), (19) where T(E) and T(E=0) represent the theoretical half-lives with and without the laser electric field, respectively. Similarly, the rate of change of the penetration probability δ P is written as δP=P(E)P(E=0)P(E=0), (20) where P(E) and P(E=0) represent the theoretical penetration probabilities with and without the laser electric field, respectively. Because the collision of the α-particle with the potential barrier occurs inside the nucleus, collision frequency ν is insensitive to the external laser field. Therefore, we assume that the laser field changes the half-life of the α decay mainly by affecting the α decay penetration probability. δ T can be represented by P(E) and P(E=0) δT=P(E=0)P(E)P(E). (21) We studied δ P and δ T of the α decay of the ground-state even–even nuclei with laser intensities of I=1023W/cm2 and I=1024W/cm2. The detailed results are presented in Table 1. The α decay energy used in the calculations was obtained from AME2020 [82, 83]. The quadrupole deformation β2, hexadecapole deformation β4 and hexacontatetrapole deformation β6 were obtained from FRDM2012 [84]. The angle ψ between the direction of the laser electric field and that of the α-particle emission was set to zero. In Table 1, the first three columns represent the parent nuclei, α-decay energy , and theoretical penetration probability value P without the laser field. The next three columns represent the theoretical penetration probability value P23 for laser intensities I=1023W/cm2 and the corresponding δ P23 and δ T23, respectively. The last three columns represent the theoretical penetration probability value P24 for a laser intensity of I=1024W/cm2 and the corresponding δ P24 and δ T24, respectively.

Table 1
Influence of a laser pulse with an intensity of 1023W/cm2 and 1024W/cm2 on the α decay of the ground-state even–even nuclei
Nucleus AZ Qp (MeV) P I = 1023 W∕cm2 I = 1024 W∕cm2
P23 P23 T23 P24 P24 T24
106Te 4.29 7.542×10−19 7.543×10−19 1.501×10−4 −1.501×10−4 7.546×10−19 4.774×10−4 −4.772×10−4
108Te 3.42 1.401×10−23 1.401×10−23 2.354×10−4 −2.353×10−4 1.402×10−23 7.446×10−4 −7.441×10−4
108Xe 4.57 1.152×10−18 1.152×10−18 0 0 1.152×10−18 0 0
110Xe 3.872 5.981×10−22 5.982×10−22 1.915×10−4 −1.914×10−4 5.985×10−22 6.077×10−4 −6.073×10−4
112Xe 3.33 2.523×10−25 2.523×10−25 2.650×10−4 −2.650×10−4 2.525×10−25 8.377×10−4 −8.370×10−4
114Ba 3.592 9.200×10−25 9.202×10−25 2.298×10−4 −2.297×10−4 9.206×10−25 7.274×10−4 −7.268×10−4
144Nd 1.901 4.281×10−46 4.287×10−46 1.496×10−3 −1.494×10−3 4.301×10−46 4.740×10−3 −4.717×10−3
146Sm 2.529 2.925×10−38 2.927×10−38 8.304×10−4 −8.297×10−4 2.932×10−38 2.629×10−3 −2.622×10−3
148Sm 1.987 2.142×10−46 2.145×10−46 1.420×10−3 −1.418×10−3 2.151×10−46 4.496×10−3 −4.476×10−3
148Gd 3.271 5.715×10−32 5.717×10−32 4.977×10−4 −4.974×10−4 5.724×10−32 1.577×10−3 −1.574×10−3
150Gd 2.807 1.679×10−36 1.680×10−36 7.012×10−4 −7.007×10−4 1.683×10−36 2.216×10−3 −2.211×10−3
152Gd 2.204 3.504×10−44 3.508×10−44 1.224×10−3 −1.222×10−3 3.517×10−44 3.874×10−3 −3.859×10−3
150Dy 4.351 1.670×10−25 1.670×10−25 2.900×10−4 −2.899×10−4 1.671×10−25 9.164×10−4 −9.156×10−4
152Dy 3.727 1.462×10−29 1.463×10−29 4.008×10−4 −4.006×10−4 1.464×10−29 1.273×10−3 −1.271×10−3
154Dy 2.945 3.564×10−36 3.566×10−36 6.811×10−4 −6.806×10−4 3.571×10−36 2.156×10−3 −2.151×10−3
152Er 4.934 1.887×10−23 1.887×10−23 2.301×10−4 −2.300×10−4 1.888×10−23 7.278×10−4 −7.273×10−4
154Er 4.28 5.033×10−27 5.035×10−27 3.100×10−4 −3.099×10−4 5.038×10−27 9.818×10−4 −9.809×10−4
156Er 3.481 1.581×10−32 1.582×10−32 4.891×10−4 −4.889×10−4 1.584×10−32 1.548×10−3 −1.546×10−3
154Yb 5.474 6.059×10−22 6.060×10−22 1.910×10−4 −1.909×10−4 6.062×10−22 6.032×10−4 −6.029×10−4
156Yb 4.81 4.774×10−25 4.776×10−25 2.510×10−4 −2.510×10−4 4.778×10−25 7.943×10−4 −7.937×10−4
156Hf 6.026 1.282×10−20 1.282×10−20 1.608×10−4 −1.608×10−4 1.283×10−20 5.088×10−4 −5.086×10−4
158Hf 5.405 4.150×10−23 4.151×10−23 2.039×10−4 −2.039×10−4 4.152×10−23 6.451×10−4 −6.447×10−4
160Hf 4.902 1.980×10−25 1.981×10−25 2.559×10−4 −2.558×10−4 1.982×10−25 8.102×10−4 −8.095×10−4
162Hf 4.416 4.002×10−28 4.003×10−28 3.231×10−4 −3.230×10−4 4.006×10−28 1.022×10−3 −1.021×10−3
174Hf 2.494 4.670×10−46 4.676×10−46 1.223×10−3 −1.222×10−3 4.688×10−46 3.872×10−3 −3.857×10−3
158W 6.613 2.349×10−19 2.349×10−19 1.371×10−4 −1.370×10−4 2.350×10−19 4.328×10−4 −4.326×10−4
160W 6.066 2.848×10−21 2.849×10−21 1.657×10−4 −1.657×10−4 2.850×10−21 5.237×10−4 −5.234×10−4
162W 5.678 9.691×10−23 9.693×10−23 1.955×10−4 −1.954×10−4 9.697×10−23 6.170×10−4 −6.166×10−4
164W 5.278 1.750×10−24 1.751×10−24 2.312×10−4 −2.312×10−4 1.752×10−24 7.319×10−4 −7.314×10−4
166W 4.856 1.359×10−26 1.359×10−26 2.792×10−4 −2.792×10−4 1.360×10−26 8.842×10−4 −8.834×10−4
168W 4.501 1.423×10−28 1.423×10−28 3.339×10−4 −3.338×10−4 1.424×10−28 1.059×10−3 −1.057×10−3
180W 2.515 2.347×10−47 2.350×10−47 1.275×10−3 −1.274×10−3 2.356×10−47 4.038×10−3 −4.022×10−3
162Os 6.768 1.429×10−19 1.429×10−19 1.373×10−4 −1.373×10−4 1.430×10−19 4.330×10−4 −4.328×10−4
164Os 6.479 1.798×10−20 1.798×10−20 1.544×10−4 −1.544×10−4 1.798×10−20 4.874×10−4 −4.871×10−4
166Os 6.143 1.180×10−21 1.180×10−21 1.762×10−4 −1.762×10−4 1.181×10−21 5.562×10−4 −5.559×10−4
168Os 5.816 6.202×10−23 6.203×10−23 2.006×10−4 −2.005×10−4 6.206×10−23 6.341×10−4 −6.337×10−4
170Os 5.537 4.158×10−24 4.159×10−24 2.264×10−4 −2.263×10−4 4.161×10−24 7.164×10−4 −7.158×10−4
172Os 5.224 1.529×10−25 1.529×10−25 2.606×10−4 −2.605×10−4 1.530×10−25 8.244×10−4 −8.237×10−4
174Os 4.871 2.312×10−27 2.313×10−27 3.065×10−4 −3.064×10−4 2.314×10−27 9.696×10−4 −9.686×10−4
186Os 2.821 1.183×10−44 1.184×10−44 1.062×10−3 −1.061×10−3 1.187×10−44 3.360×10−3 −3.348×10−3
166Pt 7.292 1.319×10−18 1.320×10−18 1.254×10−4 −1.254×10−4 1.320×10−18 3.940×10−4 −3.939×10−4
168Pt 6.99 1.720×10−19 1.720×10−19 1.391×10−4 −1.391×10−4 1.720×10−19 4.399×10−4 −4.397×10−4
170Pt 6.707 2.211×10−20 2.211×10−20 1.550×10−4 −1.550×10−4 2.212×10−20 4.894×10−4 −4.892×10−4
172Pt 6.463 3.459×10−21 3.459×10−21 1.709×10−4 −1.709×10−4 3.461×10−21 5.402×10−4 −5.399×10−4
174Pt 6.183 3.330×10−22 3.330×10−22 1.908×10−4 −1.908×10−4 3.332×10−22 6.036×10−4 −6.032×10−4
176Pt 5.885 2.235×10−23 2.236×10−23 2.153×10−4 −2.152×10−4 2.237×10−23 6.811×10−4 −6.806×10−4
178Pt 5.573 1.089×10−24 1.090×10−24 2.457×10−4 −2.457×10−4 1.090×10−24 7.781×10−4 −7.775×10−4
180Pt 5.276 4.093×10−26 4.094×10−26 2.793×10−4 −2.793×10−4 4.096×10−26 8.835×10−4 −8.827×10−4
182Pt 4.951 7.896×10−28 7.898×10−28 3.229×10−4 −3.228×10−4 7.904×10−28 1.022×10−3 −1.021×10−3
184Pt 4.599 6.658×10−30 6.660×10−30 3.816×10−4 −3.815×10−4 6.666×10−30 1.207×10−3 −1.205×10−3
186Pt 4.32 9.991×10−32 9.995×10−32 4.411×10−4 −4.409×10−4 1.001×10−31 1.396×10−3 −1.394×10−3
188Pt 4.007 5.250×10−34 5.252×10−34 5.245×10−4 −5.242×10−4 5.258×10−34 1.659×10−3 −1.656×10−3
190Pt 3.269 8.531×10−41 8.538×10−41 8.078×10−4 −8.072×10−4 8.553×10−41 2.556×10−3 −2.550×10−3
170Hg 7.77 6.641×10−18 6.642×10−18 1.154×10−4 −1.154×10−4 6.643×10−18 3.636×10−4 −3.635×10−4
172Hg 7.524 1.478×10−18 1.478×10−18 1.262×10−4 −1.262×10−4 1.479×10−18 3.981×10−4 −3.979×10−4
174Hg 7.233 2.085×10−19 2.086×10−19 1.391×10−4 −1.390×10−4 2.086×10−19 4.393×10−4 −4.391×10−4
176Hg 6.897 1.818×10−20 1.818×10−20 1.560×10−4 −1.560×10−4 1.819×10−20 4.930×10−4 −4.927×10−4
178Hg 6.577 1.561×10−21 1.561×10−21 1.755×10−4 −1.755×10−4 1.562×10−21 5.547×10−4 −5.544×10−4
180Hg 6.259 1.639×10−22 1.639×10−22 2.023×10−4 −2.023×10−4 1.640×10−22 6.401×10−4 −6.397×10−4
182Hg 5.996 1.487×10−23 1.488×10−23 2.245×10−4 −2.245×10−4 1.488×10−23 7.103×10−4 −7.098×10−4
184Hg 5.66 4.788×10−25 4.789×10−25 2.554×10−4 −2.553×10−4 4.792×10−25 8.084×10−4 −8.077×10−4
186Hg 5.204 2.070×10−27 2.070×10−27 3.029×10−4 −3.028×10−4 2.072×10−27 9.591×10−4 −9.582×10−4
188Hg 4.709 2.907×10−30 2.908×10−30 3.755×10−4 −3.753×10−4 2.910×10−30 1.189×10−3 −1.188×10−3
178Pb 7.789 1.847×10−18 1.847×10−18 1.252×10−4 −1.251×10−4 1.848×10−18 3.946×10−4 −3.945×10−4
180Pb 7.419 1.555×10−19 1.555×10−19 1.397×10−4 −1.397×10−4 1.556×10−19 4.422×10−4 −4.420×10−4
182Pb 7.066 1.203×10−20 1.204×10−20 1.569×10−4 −1.569×10−4 1.204×10−20 4.963×10−4 −4.961×10−4
184Pb 6.774 1.270×10−21 1.271×10−21 1.740×10−4 −1.740×10−4 1.271×10−21 5.503×10−4 −5.500×10−4
186Pb 6.471 1.022×10−22 1.022×10−22 1.943×10−4 −1.943×10−4 1.023×10−22 6.145×10−4 −6.141×10−4
188Pb 6.109 3.619×10−24 3.620×10−24 2.216×10−4 −2.216×10−4 3.622×10−24 7.007×10−4 −7.002×10−4
190Pb 5.698 5.321×10−26 5.322×10−26 2.588×10−4 −2.587×10−4 5.325×10−26 8.179×10−4 −8.172×10−4
192Pb 5.222 2.029×10−28 2.029×10−28 3.127×10−4 −3.126×10−4 2.031×10−28 9.885×10−4 −9.876×10−4
194Pb 4.738 2.716×10−31 2.717×10−31 3.853×10−4 −3.851×10−4 2.719×10−31 1.219×10−3 −1.217×10−3
210Pb 3.792 2.882×10−38 2.884×10−38 7.098×10−4 −7.093×10−4 2.889×10−38 2.249×10−3 −2.244×10−3
186Po 8.501 3.967×10−17 3.968×10−17 1.147×10−4 −1.147×10−4 3.969×10−17 3.628×10−4 −3.626×10−4
188Po 8.082 3.150×10−18 3.150×10−18 1.285×10−4 −1.284×10−4 3.151×10−18 4.064×10−4 −4.062×10−4
190Po 7.693 2.446×10−19 2.446×10−19 1.435×10−4 −1.435×10−4 2.447×10−19 4.549×10−4 −4.547×10−4
192Po 7.32 1.722×10−20 1.722×10−20 1.606×10−4 −1.605×10−4 1.722×10−20 5.096×10−4 −5.094×10−4
194Po 6.987 1.337×10−21 1.337×10−21 1.788×10−4 −1.787×10−4 1.338×10−21 5.674×10−4 −5.670×10−4
196Po 6.658 8.746×10−23 8.748×10−23 2.022×10−4 −2.022×10−4 8.752×10−23 6.354×10−4 −6.350×10−4
198Po 6.31 3.753×10−24 3.754×10−24 2.276×10−4 −2.276×10−4 3.755×10−24 7.189×10−4 −7.184×10−4
200Po 5.982 1.487×10−25 1.487×10−25 2.562×10−4 −2.561×10−4 1.488×10−25 8.113×10−4 −8.106×10−4
202Po 5.701 7.528×10−27 7.530×10−27 2.878×10−4 −2.877×10−4 7.535×10−27 9.096×10−4 −9.088×10−4
204Po 5.485 6.552×10−28 6.554×10−28 3.153×10−4 −3.152×10−4 6.558×10−28 1.000×10−3 −9.991×10−4
206Po 5.327 1.021×10−28 1.022×10−28 3.417×10−4 −3.416×10−4 1.022×10−28 1.082×10−3 −1.081×10−3
208Po 5.216 2.683×10−29 2.684×10−29 3.618×10−4 −3.617×10−4 2.686×10−29 1.148×10−3 −1.147×10−3
210Po 5.408 3.406×10−28 3.407×10−28 3.424×10−4 −3.423×10−4 3.410×10−28 1.089×10−3 −1.087×10−3
212Po 8.954 1.834×10−15 1.834×10−15 1.299×10−4 −1.299×10−4 1.834×10−15 4.098×10−4 −4.097×10−4
214Po 7.834 2.035×10−18 2.036×10−18 1.709×10−4 −1.708×10−4 2.036×10−18 5.410×10−4 −5.407×10−4
216Po 6.906 1.949×10−21 1.949×10−21 2.217×10−4 −2.217×10−4 1.950×10−21 7.028×10−4 −7.023×10−4
218Po 6.115 1.403×10−24 1.404×10−24 2.874×10−4 −2.873×10−4 1.405×10−24 9.091×10−4 −9.082×10−4
194Rn 7.862 2.725×10−19 2.726×10−19 1.457×10−4 −1.457×10−4 2.726×10−19 4.613×10−4 −4.611×10−4
196Rn 7.617 5.195×10−20 5.196×10−20 1.578×10−4 −1.578×10−4 5.198×10−20 4.994×10−4 −4.991×10−4
198Rn 7.349 7.196×10−21 7.197×10−21 1.722×10−4 −1.721×10−4 7.200×10−21 5.443×10−4 −5.440×10−4
200Rn 7.043 4.433×10−22 4.434×10−22 1.874×10−4 −1.873×10−4 4.436×10−22 5.921×10−4 −5.918×10−4
202Rn 6.774 4.638×10−23 4.639×10−23 2.056×10−4 −2.056×10−4 4.641×10−23 6.494×10−4 −6.489×10−4
204Rn 6.547 6.223×10−24 6.224×10−24 2.231×10−4 −2.231×10−4 6.227×10−24 7.056×10−4 −7.051×10−4
206Rn 6.384 1.425×10−24 1.425×10−24 2.386×10−4 −2.385×10−4 1.426×10−24 7.548×10−4 −7.543×10−4
208Rn 6.261 4.470×10−25 4.471×10−25 2.521×10−4 −2.521×10−4 4.474×10−25 7.974×10−4 −7.967×10−4
210Rn 6.159 1.691×10−25 1.691×10−25 2.644×10−4 −2.643×10−4 1.692×10−25 8.363×10−4 −8.356×10−4
212Rn 6.385 1.812×10−24 1.812×10−24 2.515×10−4 −2.514×10−4 1.813×10−24 7.943×10−4 −7.937×10−4
214Rn 9.208 1.609×10−15 1.609×10−15 1.245×10−4 −1.245×10−4 1.610×10−15 3.948×10−4 −3.947×10−4
216Rn 8.198 4.316×10−18 4.316×10−18 1.597×10−4 −1.596×10−4 4.318×10−18 5.029×10−4 −5.026×10−4
218Rn 7.263 5.514×10−21 5.516×10−21 2.046×10−4 −2.046×10−4 5.518×10−21 6.464×10−4 −6.460×10−4
220Rn 6.405 3.190×10−24 3.191×10−24 2.658×10−4 −2.657×10−4 3.193×10−24 8.409×10−4 −8.402×10−4
222Rn 5.59 5.796×10−28 5.798×10−28 3.558×10−4 −3.557×10−4 5.803×10−28 1.125×10−3 −1.124×10−3
202Ra 7.88 7.889×10−20 7.890×10−20 1.562×10−4 −1.562×10−4 7.893×10−20 4.936×10−4 −4.934×10−4
204Ra 7.637 1.297×10−20 1.297×10−20 1.679×10−4 −1.678×10−4 1.297×10−20 5.312×10−4 −5.309×10−4
206Ra 7.415 1.881×10−21 1.881×10−21 1.790×10−4 −1.789×10−4 1.882×10−21 5.657×10−4 −5.654×10−4
208Ra 7.273 6.633×10−22 6.634×10−22 1.888×10−4 −1.888×10−4 6.637×10−22 5.976×10−4 −5.972×10−4
210Ra 7.151 2.501×10−22 2.502×10−22 1.984×10−4 −1.984×10−4 2.503×10−22 6.272×10−4 −6.268×10−4
214Ra 7.273 7.154×10−22 7.156×10−22 1.973×10−4 −1.972×10−4 7.159×10−22 6.249×10−4 −6.245×10−4
216Ra 9.526 1.982×10−15 1.983×10−15 1.195×10−4 −1.195×10−4 1.983×10−15 3.766×10−4 −3.764×10−4
218Ra 8.54 7.503×10−18 7.505×10−18 1.492×10−4 −1.492×10−4 7.507×10−18 4.717×10−4 −4.714×10−4
220Ra 7.594 1.186×10−20 1.186×10−20 1.900×10−4 −1.899×10−4 1.187×10−20 6.012×10−4 −6.009×10−4
222Ra 6.678 7.823×10−24 7.825×10−24 2.516×10−4 −2.515×10−4 7.829×10−24 7.962×10−4 −7.956×10−4
224Ra 5.789 1.089×10−27 1.090×10−27 3.431×10−4 −3.430×10−4 1.090×10−27 1.086×10−3 −1.085×10−3
226Ra 4.871 5.845×10−33 5.847×10−33 4.937×10−4 −4.934×10−4 5.854×10−33 1.561×10−3 −1.559×10−3
208Th 8.2 1.434×10−19 1.434×10−19 1.513×10−4 −1.513×10−4 1.435×10−19 4.774×10−4 −4.771×10−4
210Th 8.069 4.880×10−20 4.881×10−20 1.574×10−4 −1.574×10−4 4.883×10−20 4.969×10−4 −4.966×10−4
212Th 7.958 2.429×10−20 2.429×10−20 1.644×10−4 −1.644×10−4 2.430×10−20 5.191×10−4 −5.188×10−4
214Th 7.827 8.913×10−21 8.915×10−21 1.714×10−4 −1.714×10−4 8.918×10−21 5.419×10−4 −5.416×10−4
216Th 8.072 5.455×10−20 5.456×10−20 1.636×10−4 −1.636×10−4 5.458×10−20 5.184×10−4 −5.182×10−4
218Th 9.849 2.468×10−15 2.468×10−15 1.130×10−4 −1.130×10−4 2.469×10−15 3.583×10−4 −3.582×10−4
220Th 8.973 2.164×10−17 2.164×10−17 1.383×10−4 −1.383×10−4 2.165×10−17 4.349×10−4 −4.347×10−4
222Th 8.133 1.374×10−19 1.375×10−19 1.712×10−4 −1.712×10−4 1.375×10−19 5.406×10−4 −5.403×10−4
224Th 7.299 4.352×10−22 4.353×10−22 2.189×10−4 −2.188×10−4 4.355×10−22 6.924×10−4 −6.919×10−4
226Th 6.453 2.227×10−25 2.228×10−25 2.836×10−4 −2.835×10−4 2.229×10−25 8.964×10−4 −8.956×10−4
228Th 5.52 7.030×10−30 7.033×10−30 3.941×10−4 −3.939×10−4 7.039×10−30 1.245×10−3 −1.244×10−3
230Th 4.77 2.344×10−34 2.345×10−34 5.420×10−4 −5.417×10−4 2.348×10−34 1.715×10−3 −1.712×10−3
232Th 4.082 1.077×10−39 1.078×10−39 7.586×10−4 −7.580×10−4 1.080×10−39 2.400×10−3 −2.395×10−3
216U 8.531 2.339×10−19 2.339×10−19 1.471×10−4 −1.471×10−4 2.340×10−19 4.661×10−4 −4.659×10−4
218U 8.775 1.172×10−18 1.173×10−18 1.416×10−4 −1.416×10−4 1.173×10−18 4.478×10−4 −4.476×10−4
222U 9.48 8.699×10−17 8.701×10−17 1.261×10−4 −1.261×10−4 8.703×10−17 3.975×10−4 −3.973×10−4
224U 8.628 7.834×10−19 7.835×10−19 1.554×10−4 −1.554×10−4 7.837×10−19 4.904×10−4 −4.902×10−4
226U 7.701 1.503×10−21 1.504×10−21 1.984×10−4 −1.984×10−4 1.504×10−21 6.275×10−4 −6.271×10−4
228U 6.8 1.034×10−24 1.035×10−24 2.602×10−4 −2.601×10−4 1.035×10−24 8.230×10−4 −8.223×10−4
230U 5.993 2.734×10−28 2.735×10−28 3.402×10−4 −3.400×10−4 2.737×10−28 1.076×10−3 −1.074×10−3
232U 5.414 3.194×10−31 3.195×10−31 4.272×10−4 −4.271×10−4 3.198×10−31 1.352×10−3 −1.350×10−3
234U 4.858 1.720×10−34 1.721×10−34 5.468×10−4 −5.465×10−4 1.723×10−34 1.730×10−3 −1.727×10−3
236U 4.573 1.303×10−36 1.304×10−36 6.242×10−4 −6.238×10−4 1.306×10−36 1.975×10−3 −1.971×10−3
238U 4.27 5.116×10−39 5.120×10−39 7.279×10−4 −7.274×10−4 5.128×10−39 2.303×10−3 −2.298×10−3
228Pu 7.94 1.801×10−21 1.801×10−21 1.902×10−4 −1.902×10−4 1.802×10−21 6.016×10−4 −6.012×10−4
230Pu 7.178 4.867×10−24 4.868×10−24 2.373×10−4 −2.373×10−4 4.870×10−24 7.500×10−4 −7.494×10−4
234Pu 6.31 3.522×10−27 3.523×10−27 3.253×10−4 −3.252×10−4 3.526×10−27 1.029×10−3 −1.028×10−3
236Pu 5.867 2.204×10−29 2.204×10−29 3.801×10−4 −3.800×10−4 2.206×10−29 1.202×10−3 −1.201×10−3
238Pu 5.593 6.300×10−31 6.303×10−31 4.219×10−4 −4.217×10−4 6.308×10−31 1.334×10−3 −1.332×10−3
240Pu 5.256 6.861×10−33 6.865×10−33 4.844×10−4 −4.841×10−4 6.872×10−33 1.533×10−3 −1.531×10−3
242Pu 4.984 1.096×10−34 1.096×10−34 5.448×10−4 −5.445×10−4 1.098×10−34 1.724×10−3 −1.721×10−3
244Pu 4.666 5.324×10−37 5.328×10−37 6.298×10−4 −6.294×10−4 5.335×10−37 1.993×10−3 −1.989×10−3
234Cm 7.365 1.136×10−23 1.136×10−23 2.394×10−4 −2.393×10−4 1.137×10−23 7.574×10−4 −7.568×10−4
236Cm 7.067 8.844×10−25 8.846×10−25 2.631×10−4 −2.631×10−4 8.851×10−25 8.327×10−4 −8.320×10−4
238Cm 6.67 2.144×10−26 2.145×10−26 2.990×10−4 −2.989×10−4 2.146×10−26 9.458×10−4 −9.449×10−4
240Cm 6.398 1.093×10−27 1.093×10−27 3.272×10−4 −3.271×10−4 1.094×10−27 1.035×10−3 −1.034×10−3
242Cm 6.216 1.350×10−28 1.351×10−28 3.494×10−4 −3.493×10−4 1.352×10−28 1.106×10−3 −1.105×10−3
244Cm 5.902 3.289×10−30 3.290×10−30 3.914×10−4 −3.913×10−4 3.293×10−30 1.239×10−3 −1.237×10−3
246Cm 5.475 1.170×10−32 1.170×10−32 4.593×10−4 −4.591×10−4 1.172×10−32 1.454×10−3 −1.451×10−3
248Cm 5.162 1.189×10−34 1.190×10−34 5.228×10−4 −5.226×10−4 1.191×10−34 1.655×10−3 −1.652×10−3
238Cf 8.13 8.684×10−22 8.685×10−22 2.019×10−4 −2.019×10−4 8.689×10−22 6.384×10−4 −6.380×10−4
240Cf 7.711 3.627×10−23 3.628×10−23 2.268×10−4 −2.267×10−4 3.629×10−23 7.176×10−4 −7.170×10−4
242Cf 7.517 6.678×10−24 6.680×10−24 2.406×10−4 −2.405×10−4 6.683×10−24 7.604×10−4 −7.598×10−4
244Cf 7.329 1.365×10−24 1.365×10−24 2.556×10−4 −2.556×10−4 1.366×10−24 8.088×10−4 −8.082×10−4
246Cf 6.862 1.739×10−26 1.740×10−26 2.941×10−4 −2.940×10−4 1.741×10−26 9.310×10−4 −9.301×10−4
248Cf 6.361 8.377×10−29 8.380×10−29 3.449×10−4 −3.448×10−4 8.386×10−29 1.091×10−3 −1.090×10−3
250Cf 6.129 5.615×10−30 5.617×10−30 3.746×10−4 −3.745×10−4 5.622×10−30 1.186×10−3 −1.185×10−3
252Cf 6.217 1.601×10−29 1.602×10−29 3.682×10−4 −3.681×10−4 1.603×10−29 1.165×10−3 −1.164×10−3
254Cf 5.927 4.888×10−31 4.890×10−31 4.096×10−4 −4.095×10−4 4.894×10−31 1.297×10−3 −1.295×10−3
246Fm 8.379 9.890×10−22 9.892×10−22 1.984×10−4 −1.984×10−4 9.897×10−22 6.268×10−4 −6.264×10−4
248Fm 7.995 5.730×10−23 5.731×10−23 2.195×10−4 −2.194×10−4 5.734×10−23 6.953×10−4 −6.948×10−4
250Fm 7.557 1.480×10−24 1.480×10−24 2.480×10−4 −2.479×10−4 1.481×10−24 7.838×10−4 −7.832×10−4
252Fm 7.154 3.803×10−26 3.804×10−26 2.788×10−4 −2.787×10−4 3.807×10−26 8.819×10−4 −8.812×10−4
254Fm 7.307 1.634×10−25 1.634×10−25 2.697×10−4 −2.696×10−4 1.635×10−25 8.545×10−4 −8.537×10−4
256Fm 7.025 1.154×10−26 1.154×10−26 2.950×10−4 −2.950×10−4 1.155×10−26 9.336×10−4 −9.327×10−4
252No 8.549 7.214×10−22 7.216×10−22 1.976×10−4 −1.976×10−4 7.219×10−22 6.243×10−4 −6.239×10−4
254No 8.226 6.424×10−23 6.425×10−23 2.150×10−4 −2.150×10−4 6.428×10−23 6.791×10−4 −6.786×10−4
256No 8.582 9.518×10−22 9.520×10−22 1.995×10−4 −1.995×10−4 9.524×10−22 6.311×10−4 −6.307×10−4
256Rf 8.926 2.009×10−21 2.010×10−21 1.847×10−4 −1.846×10−4 2.010×10−21 5.851×10−4 −5.848×10−4
258Rf 9.196 1.318×10−20 1.318×10−20 1.759×10−4 −1.759×10−4 1.318×10−20 5.576×10−4 −5.573×10−4
260Sg 9.901 2.377×10−19 2.378×10−19 1.543×10−4 −1.543×10−4 2.378×10−19 4.888×10−4 −4.886×10−4
266Hs 10.346 8.033×10−19 8.034×10−19 1.461×10−4 −1.461×10−4 8.037×10−19 4.623×10−4 −4.621×10−4
268Hs 9.76 2.387×10−20 2.387×10−20 1.649×10−4 −1.648×10−4 2.388×10−20 5.221×10−4 −5.218×10−4
270Hs 9.07 2.579×10−22 2.580×10−22 1.920×10−4 −1.919×10−4 2.581×10−22 6.093×10−4 −6.089×10−4
270Ds 11.117 1.344×10−17 1.344×10−17 1.298×10−4 −1.298×10−4 1.344×10−17 4.102×10−4 −4.100×10−4
282Ds 9.15 7.655×10−23 7.657×10−23 1.992×10−4 −1.992×10−4 7.660×10−23 6.296×10−4 −6.292×10−4
286Cn 9.24 3.165×10−23 3.166×10−23 2.001×10−4 −2.000×10−4 3.167×10−23 6.316×10−4 −6.312×10−4
286Fl 10.36 8.791×10−21 8.792×10−21 1.592×10−4 −1.592×10−4 8.795×10−21 5.030×10−4 −5.028×10−4
288Fl 10.076 1.610×10−21 1.610×10−21 1.694×10−4 −1.694×10−4 1.611×10−21 5.365×10−4 −5.362×10−4
290Fl 9.86 4.198×10−22 4.199×10−22 1.789×10−4 −1.788×10−4 4.200×10−22 5.651×10−4 −5.647×10−4
290Lv 11 9.093×10−20 9.094×10−20 1.444×10−4 −1.444×10−4 9.097×10−20 4.565×10−4 −4.563×10−4
292Lv 10.791 2.750×10−20 2.751×10−20 1.507×10−4 −1.507×10−4 2.752×10−20 4.770×10−4 −4.768×10−4
294Og 11.87 2.718×10−18 2.719×10−18 1.271×10−4 −1.271×10−4 2.719×10−18 4.020×10−4 −4.018×10−4
Show more

Table 1 shows that laser electric fields with intensities of I=1023W/cm2 and I=1024W/cm2 can cause a slight change in the α decay penetration probability of most parent nuclei. However, 108Xe is not affected by the laser electric field because it has a mass number twice the proton number, resulting in Zeff=0. This makes 108Xe an exception, with δ P and δ T values of zero for any laser field intensity. Moreover, the parent nucleus that was the most sensitive to the laser electric field was 144Nd, which had the lowest decay energy. For a fixed laser intensity, the smaller the decay energy, the larger the relative rate of change of the α-particle energy, according to Eq. (18). The schematics in Fig. 1, show that a smaller decay energy corresponds to a larger rate of change of the penetration probability P. This supports the findings of [72], which suggested that decay energy is inversely proportional to δ P. Although 144Nd already corresponds to δ T in the order of thousands of parts in the case of I=1024W/cm2, the angle between the laser electric field direction and the α particle-emission direction was not always zero in the experiments. Therefore, it is more meaningful to study the effects of a laser on the emitted α particles in any direction.

In this study, we investigated the correlation between δ P and ψ for ground-state even–even nuclei when I=1023W/cm2. The calculation results are shown in Fig. 2, where ψ ranges from zero to 2π, and each blue line represents the variation of a different parent nucleus δ P with ψ. This figure shows that δ P has a maximum value when ψ=0, that is, the α particle-emission direction is the same as the laser electric field direction. In contrast, when the direction of the α particle emission is opposite to the direction of the laser electric field, that is, ψ=π, δ P has a minimum value, and its absolute value is almost equal to the maximum value of δ P. Moreover, the α particle-emission and laser electric field directions are perpendicular to each other in the case of ψ=1/2π or ψ=3/2π and the laser has almost no effect on the α decay penetration probability. Although δ P varies for different nuclei at the same laser intensity, it exhibits a similar trend in the variation of δ P with ψ, which is similar to that of cosψ with ψ, indicating a possible linear relationship between δ P and cosψ.

Fig. 2
(Color online) Correlation between δ P and ψ for 190 ground-state even–even nuclei
pic

Practical experiments involve studying the interactions between lasers and multiple nuclei (nuclei population). However, previous studies on laser–nucleus interactions have focused on individual nuclei and overlooked the effect of the laser on the nuclei population [71]. The effect of the laser on the penetration probability of α decay is closely related to the angle between the laser and α particle-emission direction, making the incident direction of the laser an interesting topic to explore. In this study, we investigated the average effect on the penetration probability δ Pavg of the nuclei population with a laser intensity of I=1023W/cm2 in a specific direction. We assumed that the number of parent nuclei was sufficiently large and that the emission direction of the particles was entirely random. The calculation results are shown in Fig. 3, where the horizontal coordinate represents the mass number of the parent nuclei and the vertical coordinate represents the corresponding δ Pavg.

Fig. 3
(Color online) Average effect of a laser on the penetration probability δ Pavg of the nuclei population with a laser intensity of I=1023W/cm2 from a specific direction
pic

Because the direction of the laser is fixed and the emission direction of the α particle is random, the effect of the laser on the α decay penetration probability of a nucleus in the nuclei population depends on ψ. When cosψ > 0, the laser increases the α decay penetration probability; however, when cosψ < 0, the laser decreases it. This implies that a fixed laser direction has both suppressive and facilitative effects on the α decay penetration probability of the parent nucleus in the nuclei population. If the relationship between δ P and the laser electric field is linear, then the average value of the rate of change of the penetration probability in all directions is zero. However, Eq. (2) is an exponential function, and the absolute value of δ P corresponding to the two cases (e.g., ψ = 0 and ψ = π) in which the α particle emission direction is at a completely opposite angle to the laser direction is different for the same nucleus. To further visualize this point, considering the nucleus 144Nd, we calculated the absolute value of δ P corresponding to the case of increasing or decreasing using the same value, and the calculations were plotted in Fig. 4. In this figure, the horizontal axis represents the absolute value of the change in kinetic energy, and the vertical axis represents the absolute value of the change in penetration probability. For any parent nucleus, as increases, the penetration probability increases. Conversely, as decreases, the penetration probability also decreases. In addition, we provide the absolute value of δ P corresponding to the case of 144Nd for increasing or decreasing the same value of V in Fig. 5. Different from Fig. 4, the increase in V led to a decrease in the probability of penetration in this figure.

Fig. 4
(Color online) Difference between the absolute value of δ P calculated by increasing or decreasing
pic
Fig. 5
(Color online) Difference between the absolute value of δ P calculated by increasing or decreasing V
pic

As shown in Figs. 4 and 5, for the parent nucleus 144Nd, the absolute value of P calculated by decreasing the value of V and increasing the value of (which corresponds to the laser direction being the same as the direction of particle emission) is greater than the absolute value of P calculated by increasing the value of V and decreasing the value of (which corresponds to the laser direction being the opposite of the direction of particle emission) for the same transverse coordinates. This means that δ Pavg obtained by averaging over all α emission directions should be greater than zero for the parent nucleus 144Nd. This conclusion is also supported in Fig. 3, which shows that the suppression and promotion of the α decay penetration probability of the nuclei population by the laser does not cancel completely; a small amount δ Pavg is retained, which is three orders of magnitude lower than δ P at cosψ=0 under the same laser conditions. This indicates that the relationship between the laser electric field intensity E and δ P is not completely linear.

Interestingly, δ Pavg remains positive for most nuclei populations, instead of being equally distributed around zero. To explain this phenomenon, we consider the Taylor expansion in Eq. (2) [71]. P(θ)=exp[χθ(0)]exp[χθ(1)+χθ(2)+...], (22) where χθ(0), χθ(1), and χθ(2) are expressed as χθ(0)=2(2μ)1/2Rin(θ)Rout(θ)VθlCdr, (23) χθ(1)=E(t)×(2μ)1/2ZeffcosψRin(θ)Rout(θ)rVθlCdr, (24) χθ(2)=E2(t)×(2μ)1/2(Zeffcosψ)24Rin(θ)Rout(θ)r2VθlC3/2dr (25) where VθlC=Vl(r)+VC(r,θ)Eα represents the integrand function without the laser modification. χθ(0) denotes the penetration probability in a given direction without laser modification. The rate of change of the penetration probability δ P(θ) in a given direction can be written as δP(θ)=χθ(1)+χθ(2)+..., (26) Eq. (25) indicates that χθ(2) in Eq. (26) is always positive for any ψ. Assuming χθ(2) varies in its positivity and negativity with cosψ as χθ(1), then δ Pavg should be distributed around zero on average for all nuclei populations. Because χθ(2) only has a positive contribution to δ Pavg, this leads to a collective upward shift in δ Pavg for all the nuclei populations shown in Fig. 3. This makes the number of nuclei populations with positive δ Pavg higher than those with negative δ Pavg. Furthermore, in Fig. 3, the laser direction is arbitrary, which means that the average rate of change of the α decay penetration probability of the nuclei population is not affected by the incident direction of the laser, but only by the laser electric field intensity. Therefore, maintaining the maximum laser intensity yielded a more significant δ Pavg. Considering the effect of the spatial shape of the laser, we suggest the use of a circularly polarized laser to obtain a more significant δ Pavg for the nuclei population in future experiments.

4

Summary

In this study, the effect of an extreme laser field on the α decay of ground-state even–even nuclei within a deformed Gamow-like model, which had only one adjustable parameter, was investigated. Results revealed that state-of-the-art lasers have a minor impact on the α decay penetration probability. Moreover, the relationship between ψ and the rate of change of the α decay penetration probability for different nuclei was studied. Furthermore, the average effect of extreme laser fields on the α decay penetration probability of many nuclei with arbitrary α particle-emission angles was calculated. From the results, it was inferred that circularly polarized lasers must be used to obtain a more significant average rate of change in the α decay half-life of nuclei populations in future experiments.

References
1. J. G. Deng, H. F. Zhang, X. D. Sun,

New behaviors of α-particle preformation factors near doubly magic 100Sn*

. Chin. Phys. C 46, 061001 (2022). https://doi.org/10.1088/1674-1137/ac5a9f
Baidu ScholarGoogle Scholar
2. J. G. Deng, H. F. Zhang,

Probing the robustness of N=126 shell closure via the α decay systematics

. Eur. Phys. J. A 58, 165 (2022). https://doi.org/10.1140/epja/s10050-022-00813-8
Baidu ScholarGoogle Scholar
3. D. M. Deng, Z. Z. Ren,

Systematics of α-preformation factors in closed-shell regions

. Nucl. Sci. Tech. 27, 150 (2016). https://doi.org/10.1007/s41365-016-0151-1
Baidu ScholarGoogle Scholar
4. N. Wan, C. Xu, Z. Z. Ren,

Exploring the sensitivity of α -decay half-life to neutron skin thickness for nuclei around 208Pb

. Nucl. Sci. Tech. 28, 22 (2016). https://doi.org/10.1007/s41365-016-0174-7
Baidu ScholarGoogle Scholar
5. G. Gamow,

Zur quantentheorie des atomkernes

. Z. Phys. 51, 204 (1928). https://doi.org/10.1007/BF01343196
Baidu ScholarGoogle Scholar
6. R.W. Gurney, E.U. Condon,

Wave mechanics and radioactive disintegration

. Nature. 122, 439 (1928). https://doi.org/10.1038/122439a0
Baidu ScholarGoogle Scholar
7. D. S. Delion,

Universal decay rule for reduced widths

. Phys. Rev. C 80, 024310 (2009). https://doi.org/10.1103/PhysRevC.80.024310
Baidu ScholarGoogle Scholar
8. K.P. Santhosh, S. Sahadevan, B. Priyanka et al.,

Systematic study of heavy cluster emission from 210–226Ra isotopes

. Nucl. Phys. A 882, 49 (2012). https://doi.org/10.1016/j.nuclphysa.2012.04.001
Baidu ScholarGoogle Scholar
9. J.M. Dong, H.F. Zhang, G. Royer,

Proton radioactivity within a generalized liquid drop model

. Phys. Rev. C 79, 054330 (2009). https://doi.org/10.1103/PhysRevC.79.054330
Baidu ScholarGoogle Scholar
10. X.J. Bao, S.Q. Guo, H.F. Zhang et al.,

Competition between α-decay and spontaneous fission for superheavy nuclei

. J. Phys. G Nucl. Part. Phys. 42, 085101 (2015). https://doi.org/10.1088/0954-3899/42/8/085101
Baidu ScholarGoogle Scholar
11. A.N. Andreyev, M. Huyse, P. Duppen Van et al.,

Signatures of the Z=82 shell closure in α-decay process

. Phys. Rev. Lett. 110, 242502 (2013). https://doi.org/10.1103/PhysRevLett.110.242502
Baidu ScholarGoogle Scholar
12. Y.T. Oganessian, F.S. Abdullin, P.D. Bailey et al.,

Synthesis of a new element with atomic number Z=117

. Phys. Rev. Lett. 104, 142502 (2010). https://doi.org/10.1103/PhysRevLett.110.242502
Baidu ScholarGoogle Scholar
13. A. Sobiczewski, K. Pomorski,

Description of structure and properties of superheavy nuclei

. Prog. Part. Nucl. Phys. 58, 292 (2007). https://doi.org/10.1016/j.ppnp.2006.05.001
Baidu ScholarGoogle Scholar
14. A. B. Balantekin, N. Takigawa,

Quantum tunneling in nuclear fusion

. Rev. Mod. Phys. 70, 77 (1998). https://doi.org/10.1103/RevModPhys.70.77
Baidu ScholarGoogle Scholar
15. H. C. Manjunatha, N. Sowmya, P. S. Damodara Gupta et al.,

Investigation of decay modes of superheavy nuclei

. Nucl. Sci. Tech. 32, 130 (2021). https://doi.org/10.1007/s41365-021-00967-y
Baidu ScholarGoogle Scholar
16. Y. Q. Xin, N. N. Ma, J. G. Deng et al.,

Properties of Z=114 super-heavy nuclei

. Nucl. Sci. Tech. 32, 55 (2021). https://doi.org/10.1007/s41365-021-00899-7
Baidu ScholarGoogle Scholar
17. Y. J. Ren, Z. Z. Ren,

New Geiger-Nuttall law for α decay of heavy nuclei

. Phys. Rev. C 85, 044608 (2012). https://doi.org/10.1103/PhysRevC.85.044608
Baidu ScholarGoogle Scholar
18. T. K. Dong, Z. Z. Ren,

New calculations of α-decay half-lives by the Viola-Seaborg formula

. Eur. Phys. J. A 26, 69 (2005). https://doi.org/10.1140/epja/i2005-10142-y
Baidu ScholarGoogle Scholar
19. H. B. Yang, Z. G. Gan, Z. Y. Zhang et al.,

New isotope 207Th and odd-even staggering in αdecay energies for nuclei with Z<82 and N>126

. Phys. Rev. C 105, L051302 (2022). https://doi.org/10.1103/PhysRevC.105.L051302
Baidu ScholarGoogle Scholar
20. H. B. Yang, Z. G. Gan, Z. Y. Zhang et al.,

α decay of the new isotope 204Ac

. Phys. Lett. B 834, 137484 (2022). https://doi.org/10.1016/j.physletb.2022.137484
Baidu ScholarGoogle Scholar
21. L. X. Chen, S. Y. Xu, Z. Y. Zhang et al.,

Reaction 55Mn + 159Tb : preparation for the synthesis of new elements*

. Chin. Phys. C 47, 054001 (2023). https://doi.org/10.1088/1674-1137/acb9e2
Baidu ScholarGoogle Scholar
22. N. Kinoshita, M. Paul, Y. Kashiv et al.,

RRETRACTED: A shorter 146Sm half-life measured and implications for 146Sm-142Nd chronology in the solar system

. Science 335, 1614 (2012). https://doi.org/10.1126/science.1215510
Baidu ScholarGoogle Scholar
23. H.O.U. Fynbo, C.A. Diget, U.C. Bergmann et al.,

Revised rates for the stellar triple-α process from measurement of 12C nuclear resonances

. Nature 433, 136 (2005). https://doi.org/10.1038/nature03219
Baidu ScholarGoogle Scholar
24. J. G. Deng, H. F. Zhang,

Correlation between α-particle preformation factor and α decay energy

. Phys. Lett. B 816, 136247 (2021). https://doi.org/10.1016/j.physletb.2021.136247
Baidu ScholarGoogle Scholar
25. Y. Z. Wang, J. Z. Gu, Z. Y. Hou,

Preformation factor for α particles in isotopes near N=Z

. Phys. Rev. C 89, 047301 (2014). https://doi.org/10.1103/PhysRevC.89.047301
Baidu ScholarGoogle Scholar
26. H. F. Zhang, W. Zuo, J. Q. Li et al.,

α decay half-lives of new superheavy nuclei within a generalized liquid drop model

. Phys. Rev. C 74, 017304 (2006). https://doi.org/10.1103/PhysRevC.74.017304
Baidu ScholarGoogle Scholar
27. M. Gonçalves, S. B. Duarte,

Effective liquid drop description for the exotic decay of nuclei

. Phys. Rev. C 48, 2409 (1993). https://doi.org/10.1103/PhysRevC.48.2409
Baidu ScholarGoogle Scholar
28. J. G. Deng, H. F. Zhang,

Systematic study of α decay half-lives within the Generalized Liquid Drop Model with various versions of proximity energies *

. Chin. Phys. C 45, 024104 (2021). https://doi.org/10.1088/1674-1137/abcc5a
Baidu ScholarGoogle Scholar
29. A. Zdeb, M. Warda, K. Pomorski,

Half-lives for α and cluster radioactivity within a Gamow-like model

. Phys. Rev. C 87, 024308 (2013). https://doi.org/10.1103/PhysRevC.87.024308
Baidu ScholarGoogle Scholar
30. A. Zdeb, M. Warda, K. Pomorski,

Half-lives for α and cluster radioactivity in a simple model

. Phys. Scr. T154, 014029 (2013). https://doi.org/10.1088/0031-8949/2013/T154/014029
Baidu ScholarGoogle Scholar
31. J. H. Cheng, J. L. Chen, J. G. Deng et al.,

Systematic study of α decay half-lives based on Gamow–like model with a screened electrostatic barrier

. Nucl. Phys. A 987, 350 (2019). https://doi.org/10.1016/j.nuclphysa.2019.05.002
Baidu ScholarGoogle Scholar
32. B. Buck, A. C. Merchant, S. M. Perez,

New look at α decay of heavy nuclei

. Phys. Rev. Lett. 65, 2975 (1990). https://doi.org/10.1103/PhysRevLett.65.2975
Baidu ScholarGoogle Scholar
33. C. Xu, Z. Z. Ren,

Global calculation of α-decay half-lives with a deformed density-dependent cluster model

. Phys. Rev. C 74, 014304 (2006). https://doi.org/10.1103/PhysRevC.74.014304
Baidu ScholarGoogle Scholar
34. C. Xu, Z. Z. Ren,

Favored α-decays of medium mass nuclei in density-dependent cluster model

. Nucl. Phys. A 760, 303 (2005). https://doi.org/10.1016/j.nuclphysa.2005.06.011
Baidu ScholarGoogle Scholar
35. X. D. Sun, P. Guo, X. H. Li,

Systematic study of α decay half-lives for even-even nuclei within a two-potential approach

. Phys. Rev. C 93, 034316 (2016). https://doi.org/10.1103/PhysRevC.93.034316
Baidu ScholarGoogle Scholar
36. J. G. Deng, J. C. Zhao, D. Xiang et al.,

Systematic study of unfavored α-decay half-lives of closed-shell nuclei related to ground and isomeric states

. Phys. Rev. C 96, 024318 (2017). https://doi.org/10.1103/PhysRevC.96.024318
Baidu ScholarGoogle Scholar
37. J. G. Deng, J. C. Zhao, P. C. Chu et al.,

Systematic study of α decay of nuclei around the Z=82, N=126 shell closures within the cluster-formation model and proximity potential 1977 formalism

. Phys. Rev. C 97, 044322 (2018). https://doi.org/10.1103/PhysRevC.97.044322
Baidu ScholarGoogle Scholar
38. C. Xu, Z. Z. Ren,

New deformed model of α-decay half-lives with a microscopic potential

. Phys. Rev. C 73, 041301 (2006). https://doi.org/10.1103/PhysRevC.73.041301
Baidu ScholarGoogle Scholar
39. M. Ismail, W. M. Seif, A. Adel et al.,

Alpha-decay of deformed superheavy nuclei as a probe of shell closures

. Nucl. Phys. A 958, 202 (2017). https://doi.org/10.1016/j.nuclphysa.2016.11.010
Baidu ScholarGoogle Scholar
40. Z. Z. Ren, C. Xu,

Theoretical calculations on α-decay half-lives by the density-dependent cluster model

. Mod. Phys. Lett. A 23, 2597 (2008). https://doi.org/10.1142/S0217732308029885
Baidu ScholarGoogle Scholar
41. D. D. Ni, Z. Z. Ren, T. K. Dong et al.,

Unified formula of half-lives for α decay and cluster radioactivity

. Phys. Rev. C 78, 044310 (2008). https://doi.org/10.1103/PhysRevC.78.044310
Baidu ScholarGoogle Scholar
42. V. E. Viola, G. T. Seaborg,

Nuclear systematics of the heavy elements—II Lifetimes for alpha, beta and spontaneous fission decay

. J. Inorg. Nucl. Chem. 28, 741 (1966). https://doi.org/10.1016/0022-1902(66)80412-8
Baidu ScholarGoogle Scholar
43. G. Royer,

Alpha emission and spontaneous fission through quasi-molecular shapes

. J. Phys. G: Nucl. Part. Phys. 26, 1149 (2000). https://doi.org/10.1088/0954-3899/26/8/305
Baidu ScholarGoogle Scholar
44. C. Qi, F. R. Xu, R. J. Liotta et al.,

Microscopic mechanism of charged-particle radioactivity and generalization of the Geiger-Nuttall law

. Phys. Rev. C 80, 044326 (2009). https://doi.org/10.1103/PhysRevC.80.044326
Baidu ScholarGoogle Scholar
45. C. Qi, F. R. Xu, R. J. Liotta et al.,

Universal Decay Law in Charged-Particle Emission and Exotic Cluster Radioactivity

. Phys. Rev. Lett. 103, 072501 (2009). https://doi.org/10.1103/PhysRevLett.103.072501
Baidu ScholarGoogle Scholar
46. D. N. Poenaru, R. A. Gherghescu, W. Greiner,

Single universal curve for cluster radioactivities and α decay

. Phys. Rev. C 83, 014601 (2011). https://doi.org/10.1103/PhysRevC.83.014601
Baidu ScholarGoogle Scholar
47. D. Strickland, G. Mourou,

Compression of amplified chirped optical pulses

. Opt. Comm. 56, 219 (1985). https://doi.org/10.1016/0030-4018(85)90120-8
Baidu ScholarGoogle Scholar
48. R. Betti, O. A. Hurricane,

Inertial-confinement fusion with lasers

. Nat. Phys. 12, 435 (2016). https://doi.org/10.1038/nphys3736
Baidu ScholarGoogle Scholar
49. M. J. C. van Gemert, A. J. Welch,

Time constants in thermal laser medicine

. Laser. Surg. Med. 9, 405 (1989). https://doi.org/10.1002/lsm.1900090414
Baidu ScholarGoogle Scholar
50. N. V. Zamfir,

Nuclear physics with 10 PW laser beams at extreme light infrastructure–nuclear physics (ELI-NP)

. Eur. Phys. J-Spec. Top. 223, 1221 (2014). https://doi.org/10.1140/epjst/e2014-02176-0
Baidu ScholarGoogle Scholar
51. B. S. Xie, Z. L. Li, S. Tang,

Electron-positron pair production in ultrastrong laser fields

. Matter Radiat. Extrem. 2, 225 (2017). https://doi.org/10.1016/j.mre.2017.07.002
Baidu ScholarGoogle Scholar
52. S. N. Chen, F. Negoita, K. Spohr et al.,

Extreme brightness laser-based neutron pulses as a pathway for investigating nucleosynthesis in the laboratory

. Matter Radiat. Extrem. 4, 054402 (2019). https://doi.org/10.1063/1.5081666
Baidu ScholarGoogle Scholar
53. S. M. Weng, Z. M. Sheng, M. Murakamiet al.,

Optimization of hole-boring radiation pressure acceleration of ion beams for fusion ignition

. Matter Radiat. Extrem. 3, 28 (2018). https://doi.org/10.1016/j.mre.2017.09.002
Baidu ScholarGoogle Scholar
54. J. W. Yoon, Y. G. Kim, I. W. Choi et al.,

Realization of laser intensity over 1023W/cm2

. Optica 8, 630 (2021). https://doi.org/10.1364/OPTICA.420520
Baidu ScholarGoogle Scholar
55. Ş Mişicu and M Rizea,

Laser-assisted proton radioactivity of spherical and deformed nuclei

. J. Phys. G: Nucl. Part. Phys. 46, 115106 (2019). https://doi.org/10.1088/1361-6471/ab1d7c
Baidu ScholarGoogle Scholar
56. K. A. Tanaka, K. M. Spohr, D. L. Balabanski et al.,

Current status and highlights of the ELI-NP research program

. Matter Radiat. Extrem. 5, 024402 (2020). https://doi.org/10.1063/1.5093535
Baidu ScholarGoogle Scholar
57. G. M. Maria,

Über Elementarakte mit zwei Quantensprüngen

. Ann. Phys., Lpz. 401, 273 (1931). https://doi.org/10.1002/andp.19314010303
Baidu ScholarGoogle Scholar
58. J. T. Qi, L. B. Fu, X. Wang,

Nuclear fission in intense laser fields

. Phys. Rev. C 102, 064629 (2020). https://doi.org/10.1103/PhysRevC.102.064629
Baidu ScholarGoogle Scholar
59. W. Wang, J. Zhou, B. Q. Liu et al.,

Exciting the isomeric 229Th nuclear state via laser-driven electron recollision

. Phys. Rev. Lett. 127, 052501 (2021). https://doi.org/10.1103/PhysRevLett.127.052501
Baidu ScholarGoogle Scholar
60. W. J. Lv, H. Duan, J. Liu,

Enhanced deuterium-tritium fusion cross sections in the presence of strong electromagnetic fields

. Phys. Rev. C 100, 064610 (2019). https://doi.org/10.1103/PhysRevC.100.064610
Baidu ScholarGoogle Scholar
61. S. A. Ghinescu, D. S. Delion,

Coupled-channels analysis of the α decay in strong electromagnetic fields

. Phys. Rev. C 101, 044304 (2020). https://doi.org/10.1103/PhysRevC.101.044304
Baidu ScholarGoogle Scholar
62. S. W. Liu, H. Duan, D. F. Ye et al.,

Deuterium-tritium fusion process in strong laser fields: Semiclassical simulation

. Phys. Rev. C 104, 044614 (2021). https://doi.org/10.1103/PhysRevC.104.044614
Baidu ScholarGoogle Scholar
63. J. Feng, W. Z. Wang, C. B. Fu et al.,

Femtosecond pumping of nuclear isomeric states by the Coulomb collision of ions with quivering electrons

. Phys. Rev. Lett. 128, 052501 (2022). https://doi.org/10.1103/PhysRevLett.128.052501
Baidu ScholarGoogle Scholar
64. Ş. Mişicu,

the refractive scattering of loosely bound nuclei in arbitrarily polarized laser fields

. Phys. Rev. C 106, 034612 (2022). https://doi.org/10.1103/PhysRevC.106.034612
Baidu ScholarGoogle Scholar
65. H. M. C. Cortés, C. Müller, C. H. Keitel et al.,

Nuclear recollisions in laser-assisted α decay

. Phys. Lett. B 723, 401 (2013). https://doi.org/10.1016/j.physletb.2013.05.025
Baidu ScholarGoogle Scholar
66. Ş. Mişicu, M. Rizea,

α-Decay in ultra-intense laser fields

. J. Phys. G Nucl. Part. Phys. 40, 095101 (2013). https://doi.org/10.1088/0954-3899/40/9/095101
Baidu ScholarGoogle Scholar
67. Ş. Mişicu, M. Rizea,

Speeding of α decay in strong laser fields

. Open Phys. 14, 81 (2016). https://doi.org/10.1515/phys-2016-0001
Baidu ScholarGoogle Scholar
68. J. T. Qi, T. Li, R. H. Xu et al.,

α decay in intense laser fields: Calculations using realistic nuclear potentials

. Phys. Rev. C 99, 044610 (2019). https://doi.org/10.1103/PhysRevC.99.044610
Baidu ScholarGoogle Scholar
69. D. P. Kis, R. Szilvasi,

Three dimensional α-tunneling in intense laser fields

. J. Phys. G Nucl. Part. Phys. 45, 045103 (2018). https://doi.org/10.1088/1361-6471/aab0d5
Baidu ScholarGoogle Scholar
70. D. Bai, Z. Z. Ren,

α Decays in superstrong static electric fields*

. Commun. Theor. Phys. 70, 559 (2018). https://doi.org/10.1088/0253-6102/70/5/559
Baidu ScholarGoogle Scholar
71. J. H. Cheng, W. Y. Zhang, Q. Xiao et al.,

Laser-assisted deformed α decay of the ground state even-even nuclei

. arXiv preprint arXiv: 2307.02095 (2023). https://doi.org/10.48550/arXiv.2307.02095
Baidu ScholarGoogle Scholar
72. J. H. Cheng, Y. Li, T. P. Yu,

Systematic study of laser-assisted proton radioactivity from deformed nuclei

. Phys. Rev. C 105, 024312 (2022). https://doi.org/10.1103/PhysRevC.105.024312
Baidu ScholarGoogle Scholar
73. F. Queisser, R. Schützhold,

Dynamically assisted nuclear fusion

. Phys. Rev. C 100, 041601 (2019). https://doi.org/10.1103/PhysRevC.100.041601
Baidu ScholarGoogle Scholar
74. Ş. Mişicu, F. Carstoiu,

Fraunhofer and refractive scattering of heavy ions in strong laser fields

. Eur. Phys. J. A 54, 90 (2018). https://doi.org/10.1140/epja/i2018-12525-3
Baidu ScholarGoogle Scholar
75. Q. Xiao, J. H. Cheng, B. L. Wang et al.,

Half-lives for proton emission and α decay within the deformed Gamow-like model

. J. Phys. G: Nucl. Part. Phys. 50, 085102 (2023). https://doi.org/10.1088/1361-6471/acdfeb
Baidu ScholarGoogle Scholar
76. N. Takigawa, T. Rumin, N. Ihara,

Coulomb interaction between spherical and deformed nuclei

. Phys. Rev. C 61, 044607 (2000). https://doi.org/10.1103/PhysRevC.61.044607
Baidu ScholarGoogle Scholar
77. M. Ismail, W. M. Seif, H. El-Gebaly,

On the Coulomb interaction between spherical and deformed nuclei

. Phys. Lett. B 563, 53 (2003). https://doi.org/10.1016/S0370-2693(03)00600-2
Baidu ScholarGoogle Scholar
78. G. L. Zhang, X. Y. Le, Z. H. Liu,

Coulomb potentials between spherical and deformed nuclei

. Chin. Phys. Lett. 25, 1247 (2008). https://doi.org/10.1088/0256-307x/25/4/023
Baidu ScholarGoogle Scholar
79. J. M. Dong, W. Zuo, J. Z. Gu et al.,

α-decay half-lives and Qa values of superheavy nuclei

. Phys. Rev. C 81, 064309 (2010). https://doi.org/10.1103/PhysRevC.81.064309
Baidu ScholarGoogle Scholar
80. C. Xu, Z. Z. Ren,

α decay of nuclei in extreme cases

. Phys. Rev. C 69, 024614 (2004). https://doi.org/10.1103/PhysRevC.69.024614
Baidu ScholarGoogle Scholar
81. J. W. Yoon, C. Jeon, J. Shin et al.,

Achieving the laser intensity of 5.5 × 1023W/cm2 with a wavefront-corrected multi-PW laser

. Opt. Express 27, 20412 (2019). https://doi.org/10.1364/OE.27.020412
Baidu ScholarGoogle Scholar
82. W. J. Huang, M. Wang, F. G. Kondev et al.,

The AME 2020 atomic mass evaluation (I). Evaluation of the input data and adjustment procedures.

Chin. Phys. C 45, 030002 (2021). https://doi.org/10.1088/1674-1137/abddb0
Baidu ScholarGoogle Scholar
83. M. Wang, W. J. Huang, F. G. Kondev et al.,

The AME 2020 atomic mass evaluation (II). Tables, graphs, and References.

Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf
Baidu ScholarGoogle Scholar
84. P. Möller, A. J. Sierk, T. Ichikawa et al.,

Nuclear ground-state masses and deformations: FRDM(2012)

. Atom. Data Nucl. Data 109, 1 (2016). https://doi.org/10.1016/j.adt.2015.10.002
Baidu ScholarGoogle Scholar
Footnote

The authors declare that they have no competing interests.