Introduction
α decay is highly significant in nuclear physics because of the information it can provide regarding the nuclear structure and stability [1-4]. This process involves the emission of an α particle (helium nucleus) by an unstable nucleus. Early interpretations of this process were provided by Gamow, Condon, and Gurney [5], who viewed it as a quantum tunneling effect. This is one of the earliest applications of quantum mechanics in nuclear physics [5, 6]. Recently, significant advancements have been made in both the theory and experimentation of α decay. Theoretically, α-decay shares a similar theory of barrier penetration with spontaneous fission, proton radioactivity, and heavy ion emission [7-10], which makes α-decay a critical tool for studying nuclear structures, e.g., from the barrier tunneling theory to the investigation of superheavy nuclei (SHN) [11-16], from the discovery of the nucleus by α scattering to the Geiger-Nuttall law [17, 18]. Experimentally, α-decay spectroscopy of heavy, superheavy, and neutron-deficient nuclei has become an important basis for the synthesis and identification of new nuclides formed in nuclear reactions [19-21].Moreover, in astrophysics, studying α decay processes is crucial for understanding popular topics such as the chronology of the solar system [22] and stellar nucleosynthesis [23].
Another important assumption in the study of α decay is that emitted α particles are formed on the surface of the nucleus and eventually pass through the potential barrier through constant collisions with the potential barrier [24, 25]. The formation, collision, and penetration processes of α decay involve the complicated structure of many-body quantum systems. To better explain the α decay process, many models and formulas have been developed, such as the generalized liquid drop model [24, 26-28], Gamow-like model [29-31], cluster model [32-34], the two-potential approach [35-37], the deformed version of the density-dependent cluster model (DDCM) with microscopic double-folding potentials [38-40], and empirical formulas [41-46], which reproduce the α decay half-life experimental data to some extent. However, because of the strong nucleon–nucleon interactions in the dense nuclear structure, previous studies of α decay have mainly observed and analyzed the behavior of the nucleus. Directly interfering with the natural decay of nuclei using conventional methods is challenging. Consequently, more effective tools are required to modulate the α decay of nuclei to obtain more information on the nuclear structure and a more comprehensive range of nuclei applications.
Since the invention of the chirped-pulse amplification (CPA) technology by Gerard Mourou and Donna Strickland [47], rapidly evolving laser technology has demonstrated its irreplaceable role in many fields such as nuclear physics, inertial confinement fusion, fusion ignition, medicine, and electron-positron pair production [48-53]. To date, significant progress has been made in the development of ultrashort, ultraintense laser pulses with pulse widths of less than 100 fs and intensities of up to 1023W/cm2 in a laboratory [54]. Moreover, the extreme light infrastructure (ELI) being constructed in Europe is expected to increase the laser intensity by one to two orders of magnitude [55, 56], providing a new platform for studying the interaction between lasers and matter in extreme laser field environments and enhancing laser-driven nuclear physics research.
In atomic-molecular physics, the interaction of lasers with matter is a well-established subject. The nonlinear reactions of molecules or atoms caused by laser fields constitute the research discipline of nonlinear optics [57]. However, in the microscopic field of nuclear physics, the direct reaction between the laser and nuclei has rarely been studied because the typical nuclear energy level is on the order of Mega-electron volts, and the energy of laser photons is much smaller than this value [58]. This gap has narrowed with the rapid developments of the laser technology. When the laser intensity reaches 1024W/cm2, the corresponding electric field strength is approximately equal to the Coulomb field strength of the nucleus near 100 fm. This implies that a direct interaction of the laser with the nucleus is possible [59-62]. Recently, extensive research has been conducted to study the direct effects of lasers on nuclei, e.g., nuclear excitation [63], refractive scattering of loosely bound nuclei [64], α decay [65-71], proton radioactivity [55, 72], nuclear fusion [73], nuclear fission [58], and modification of heavy-ion elastic-scattering differential cross sections [74]. This implies that an extreme laser-field environment offers a new tool for studying α decay. The most intriguing question is whether intense lasers can accelerate α decay, which, if feasible, would open up new possibilities for nuclear waste disposal. Another ongoing study of ours [71] explores the key factors of laser effects on the rate of change of the penetration probability of α decay of individual nuclei, that is, the properties of the nucleus and laser. However, in real applications where nuclei often appear as a population, the effect of lasers on a randomly emitted population of nuclei must be studied.
For a direct laser-nucleus interaction, an electric dipole term is introduced in the nuclear Hamiltonian, which is closely related to the angle ψ between the direction of the laser electric field and that of the α particle emission. Considering the nuclear deformation to study the laser effect on α decay is essential. In addition, the introduction of a new interaction term may be affected by the adjustable parameters. Therefore, more accurate results may be obtained using a model with minimal adjustable parameters to calculate the laser effect on α decay. In this study, we investigate the effect of an extreme laser field on the α decay of ground-state even–even nuclei based on the deformed Gamow-like model, which has only one adjustable parameter, radius constant r0. Moreover, we study the relationship between ψ and the rate of change of the α decay half-life for different nuclei. Furthermore, the average effect of the extreme laser on the nuclei population’s α decay penetration probability with arbitrary α particle-emission angles is calculated, and the possibility of obtaining a more effective average rate of change by changing the spatial shape of the laser is discussed.
The remainder of this paper is organized as follows: Section 2 introduces the deformed Gamow-like model and direct laser-nucleus interactions in detail. Section 3 presents the results and discussions. Section 4 presents the summary.
Theoretical framework
The deformed Gamow-like model
In the deformed Gamow-like model, the total penetration probability P is obtained by averaging P(θ) in all directions [38]
The total potential between the emitted α particle and daughter nucleus V(r,θ) can be expressed as
In the deformed Gamow-like model, the even–even nuclei
Laser–nucleus interaction
In an extreme laser field environment, the total potential V(r,θ,t,ψ) between the emitted α particle and daughter nucleus can be rewritten as
In this study, the laser electric field was obtained using
In an extreme laser field environment, the kinetic energy of the emitted α particle can be altered by the laser electric field. The change in kinetic energy is related to the laser electric field, and Eα can be rewritten as
-202402/1001-8042-35-02-010/alternativeImage/1001-8042-35-02-010-F001.jpg)
Results and discussion
In this study, we first discuss the effect of the magnetic field of the laser on α decay. The kinetic energy of a typical emitted α particle is approximately a few Mega-electron volts, which means that the speed of the emitted α particle is much lower than the speed of light in vacuum. Compared to the electric-field part of the laser, the magnetic field of the laser has a minor effect and can be disregarded. During α decay, the emitted α particle oscillates within the parent nucleus at a high frequency and ultimately escapes the quantum-tunneling effect. The size of the parent nucleus is on the order of 1 fm, and the oscillation frequency of the emitted α particles is estimated to be approximately 1022 Hz. Considering that the length of the tunneling process is less than 100 fm, the time required to emit α particles is less than 10-20 s. This timescale is much smaller than the currently achievable highest peak-intensity laser-pulse period [58]. Therefore, we treat the laser field as quasi-static, that is, the laser field remains constant throughout α decay.
The rate of change of the α decay half-life δ T is used to define the effect of the laser electric field on the α decay half-life and is written as
Nucleus AZ | Qp (MeV) | P | I = 1023 W∕cm2 | I = 1024 W∕cm2 | ||||
---|---|---|---|---|---|---|---|---|
P23 | P23 | T23 | P24 | P24 | T24 | |||
106Te | 4.29 | 7.542×10−19 | 7.543×10−19 | 1.501×10−4 | −1.501×10−4 | 7.546×10−19 | 4.774×10−4 | −4.772×10−4 |
108Te | 3.42 | 1.401×10−23 | 1.401×10−23 | 2.354×10−4 | −2.353×10−4 | 1.402×10−23 | 7.446×10−4 | −7.441×10−4 |
108Xe | 4.57 | 1.152×10−18 | 1.152×10−18 | 0 | 0 | 1.152×10−18 | 0 | 0 |
110Xe | 3.872 | 5.981×10−22 | 5.982×10−22 | 1.915×10−4 | −1.914×10−4 | 5.985×10−22 | 6.077×10−4 | −6.073×10−4 |
112Xe | 3.33 | 2.523×10−25 | 2.523×10−25 | 2.650×10−4 | −2.650×10−4 | 2.525×10−25 | 8.377×10−4 | −8.370×10−4 |
114Ba | 3.592 | 9.200×10−25 | 9.202×10−25 | 2.298×10−4 | −2.297×10−4 | 9.206×10−25 | 7.274×10−4 | −7.268×10−4 |
144Nd | 1.901 | 4.281×10−46 | 4.287×10−46 | 1.496×10−3 | −1.494×10−3 | 4.301×10−46 | 4.740×10−3 | −4.717×10−3 |
146Sm | 2.529 | 2.925×10−38 | 2.927×10−38 | 8.304×10−4 | −8.297×10−4 | 2.932×10−38 | 2.629×10−3 | −2.622×10−3 |
148Sm | 1.987 | 2.142×10−46 | 2.145×10−46 | 1.420×10−3 | −1.418×10−3 | 2.151×10−46 | 4.496×10−3 | −4.476×10−3 |
148Gd | 3.271 | 5.715×10−32 | 5.717×10−32 | 4.977×10−4 | −4.974×10−4 | 5.724×10−32 | 1.577×10−3 | −1.574×10−3 |
150Gd | 2.807 | 1.679×10−36 | 1.680×10−36 | 7.012×10−4 | −7.007×10−4 | 1.683×10−36 | 2.216×10−3 | −2.211×10−3 |
152Gd | 2.204 | 3.504×10−44 | 3.508×10−44 | 1.224×10−3 | −1.222×10−3 | 3.517×10−44 | 3.874×10−3 | −3.859×10−3 |
150Dy | 4.351 | 1.670×10−25 | 1.670×10−25 | 2.900×10−4 | −2.899×10−4 | 1.671×10−25 | 9.164×10−4 | −9.156×10−4 |
152Dy | 3.727 | 1.462×10−29 | 1.463×10−29 | 4.008×10−4 | −4.006×10−4 | 1.464×10−29 | 1.273×10−3 | −1.271×10−3 |
154Dy | 2.945 | 3.564×10−36 | 3.566×10−36 | 6.811×10−4 | −6.806×10−4 | 3.571×10−36 | 2.156×10−3 | −2.151×10−3 |
152Er | 4.934 | 1.887×10−23 | 1.887×10−23 | 2.301×10−4 | −2.300×10−4 | 1.888×10−23 | 7.278×10−4 | −7.273×10−4 |
154Er | 4.28 | 5.033×10−27 | 5.035×10−27 | 3.100×10−4 | −3.099×10−4 | 5.038×10−27 | 9.818×10−4 | −9.809×10−4 |
156Er | 3.481 | 1.581×10−32 | 1.582×10−32 | 4.891×10−4 | −4.889×10−4 | 1.584×10−32 | 1.548×10−3 | −1.546×10−3 |
154Yb | 5.474 | 6.059×10−22 | 6.060×10−22 | 1.910×10−4 | −1.909×10−4 | 6.062×10−22 | 6.032×10−4 | −6.029×10−4 |
156Yb | 4.81 | 4.774×10−25 | 4.776×10−25 | 2.510×10−4 | −2.510×10−4 | 4.778×10−25 | 7.943×10−4 | −7.937×10−4 |
156Hf | 6.026 | 1.282×10−20 | 1.282×10−20 | 1.608×10−4 | −1.608×10−4 | 1.283×10−20 | 5.088×10−4 | −5.086×10−4 |
158Hf | 5.405 | 4.150×10−23 | 4.151×10−23 | 2.039×10−4 | −2.039×10−4 | 4.152×10−23 | 6.451×10−4 | −6.447×10−4 |
160Hf | 4.902 | 1.980×10−25 | 1.981×10−25 | 2.559×10−4 | −2.558×10−4 | 1.982×10−25 | 8.102×10−4 | −8.095×10−4 |
162Hf | 4.416 | 4.002×10−28 | 4.003×10−28 | 3.231×10−4 | −3.230×10−4 | 4.006×10−28 | 1.022×10−3 | −1.021×10−3 |
174Hf | 2.494 | 4.670×10−46 | 4.676×10−46 | 1.223×10−3 | −1.222×10−3 | 4.688×10−46 | 3.872×10−3 | −3.857×10−3 |
158W | 6.613 | 2.349×10−19 | 2.349×10−19 | 1.371×10−4 | −1.370×10−4 | 2.350×10−19 | 4.328×10−4 | −4.326×10−4 |
160W | 6.066 | 2.848×10−21 | 2.849×10−21 | 1.657×10−4 | −1.657×10−4 | 2.850×10−21 | 5.237×10−4 | −5.234×10−4 |
162W | 5.678 | 9.691×10−23 | 9.693×10−23 | 1.955×10−4 | −1.954×10−4 | 9.697×10−23 | 6.170×10−4 | −6.166×10−4 |
164W | 5.278 | 1.750×10−24 | 1.751×10−24 | 2.312×10−4 | −2.312×10−4 | 1.752×10−24 | 7.319×10−4 | −7.314×10−4 |
166W | 4.856 | 1.359×10−26 | 1.359×10−26 | 2.792×10−4 | −2.792×10−4 | 1.360×10−26 | 8.842×10−4 | −8.834×10−4 |
168W | 4.501 | 1.423×10−28 | 1.423×10−28 | 3.339×10−4 | −3.338×10−4 | 1.424×10−28 | 1.059×10−3 | −1.057×10−3 |
180W | 2.515 | 2.347×10−47 | 2.350×10−47 | 1.275×10−3 | −1.274×10−3 | 2.356×10−47 | 4.038×10−3 | −4.022×10−3 |
162Os | 6.768 | 1.429×10−19 | 1.429×10−19 | 1.373×10−4 | −1.373×10−4 | 1.430×10−19 | 4.330×10−4 | −4.328×10−4 |
164Os | 6.479 | 1.798×10−20 | 1.798×10−20 | 1.544×10−4 | −1.544×10−4 | 1.798×10−20 | 4.874×10−4 | −4.871×10−4 |
166Os | 6.143 | 1.180×10−21 | 1.180×10−21 | 1.762×10−4 | −1.762×10−4 | 1.181×10−21 | 5.562×10−4 | −5.559×10−4 |
168Os | 5.816 | 6.202×10−23 | 6.203×10−23 | 2.006×10−4 | −2.005×10−4 | 6.206×10−23 | 6.341×10−4 | −6.337×10−4 |
170Os | 5.537 | 4.158×10−24 | 4.159×10−24 | 2.264×10−4 | −2.263×10−4 | 4.161×10−24 | 7.164×10−4 | −7.158×10−4 |
172Os | 5.224 | 1.529×10−25 | 1.529×10−25 | 2.606×10−4 | −2.605×10−4 | 1.530×10−25 | 8.244×10−4 | −8.237×10−4 |
174Os | 4.871 | 2.312×10−27 | 2.313×10−27 | 3.065×10−4 | −3.064×10−4 | 2.314×10−27 | 9.696×10−4 | −9.686×10−4 |
186Os | 2.821 | 1.183×10−44 | 1.184×10−44 | 1.062×10−3 | −1.061×10−3 | 1.187×10−44 | 3.360×10−3 | −3.348×10−3 |
166Pt | 7.292 | 1.319×10−18 | 1.320×10−18 | 1.254×10−4 | −1.254×10−4 | 1.320×10−18 | 3.940×10−4 | −3.939×10−4 |
168Pt | 6.99 | 1.720×10−19 | 1.720×10−19 | 1.391×10−4 | −1.391×10−4 | 1.720×10−19 | 4.399×10−4 | −4.397×10−4 |
170Pt | 6.707 | 2.211×10−20 | 2.211×10−20 | 1.550×10−4 | −1.550×10−4 | 2.212×10−20 | 4.894×10−4 | −4.892×10−4 |
172Pt | 6.463 | 3.459×10−21 | 3.459×10−21 | 1.709×10−4 | −1.709×10−4 | 3.461×10−21 | 5.402×10−4 | −5.399×10−4 |
174Pt | 6.183 | 3.330×10−22 | 3.330×10−22 | 1.908×10−4 | −1.908×10−4 | 3.332×10−22 | 6.036×10−4 | −6.032×10−4 |
176Pt | 5.885 | 2.235×10−23 | 2.236×10−23 | 2.153×10−4 | −2.152×10−4 | 2.237×10−23 | 6.811×10−4 | −6.806×10−4 |
178Pt | 5.573 | 1.089×10−24 | 1.090×10−24 | 2.457×10−4 | −2.457×10−4 | 1.090×10−24 | 7.781×10−4 | −7.775×10−4 |
180Pt | 5.276 | 4.093×10−26 | 4.094×10−26 | 2.793×10−4 | −2.793×10−4 | 4.096×10−26 | 8.835×10−4 | −8.827×10−4 |
182Pt | 4.951 | 7.896×10−28 | 7.898×10−28 | 3.229×10−4 | −3.228×10−4 | 7.904×10−28 | 1.022×10−3 | −1.021×10−3 |
184Pt | 4.599 | 6.658×10−30 | 6.660×10−30 | 3.816×10−4 | −3.815×10−4 | 6.666×10−30 | 1.207×10−3 | −1.205×10−3 |
186Pt | 4.32 | 9.991×10−32 | 9.995×10−32 | 4.411×10−4 | −4.409×10−4 | 1.001×10−31 | 1.396×10−3 | −1.394×10−3 |
188Pt | 4.007 | 5.250×10−34 | 5.252×10−34 | 5.245×10−4 | −5.242×10−4 | 5.258×10−34 | 1.659×10−3 | −1.656×10−3 |
190Pt | 3.269 | 8.531×10−41 | 8.538×10−41 | 8.078×10−4 | −8.072×10−4 | 8.553×10−41 | 2.556×10−3 | −2.550×10−3 |
170Hg | 7.77 | 6.641×10−18 | 6.642×10−18 | 1.154×10−4 | −1.154×10−4 | 6.643×10−18 | 3.636×10−4 | −3.635×10−4 |
172Hg | 7.524 | 1.478×10−18 | 1.478×10−18 | 1.262×10−4 | −1.262×10−4 | 1.479×10−18 | 3.981×10−4 | −3.979×10−4 |
174Hg | 7.233 | 2.085×10−19 | 2.086×10−19 | 1.391×10−4 | −1.390×10−4 | 2.086×10−19 | 4.393×10−4 | −4.391×10−4 |
176Hg | 6.897 | 1.818×10−20 | 1.818×10−20 | 1.560×10−4 | −1.560×10−4 | 1.819×10−20 | 4.930×10−4 | −4.927×10−4 |
178Hg | 6.577 | 1.561×10−21 | 1.561×10−21 | 1.755×10−4 | −1.755×10−4 | 1.562×10−21 | 5.547×10−4 | −5.544×10−4 |
180Hg | 6.259 | 1.639×10−22 | 1.639×10−22 | 2.023×10−4 | −2.023×10−4 | 1.640×10−22 | 6.401×10−4 | −6.397×10−4 |
182Hg | 5.996 | 1.487×10−23 | 1.488×10−23 | 2.245×10−4 | −2.245×10−4 | 1.488×10−23 | 7.103×10−4 | −7.098×10−4 |
184Hg | 5.66 | 4.788×10−25 | 4.789×10−25 | 2.554×10−4 | −2.553×10−4 | 4.792×10−25 | 8.084×10−4 | −8.077×10−4 |
186Hg | 5.204 | 2.070×10−27 | 2.070×10−27 | 3.029×10−4 | −3.028×10−4 | 2.072×10−27 | 9.591×10−4 | −9.582×10−4 |
188Hg | 4.709 | 2.907×10−30 | 2.908×10−30 | 3.755×10−4 | −3.753×10−4 | 2.910×10−30 | 1.189×10−3 | −1.188×10−3 |
178Pb | 7.789 | 1.847×10−18 | 1.847×10−18 | 1.252×10−4 | −1.251×10−4 | 1.848×10−18 | 3.946×10−4 | −3.945×10−4 |
180Pb | 7.419 | 1.555×10−19 | 1.555×10−19 | 1.397×10−4 | −1.397×10−4 | 1.556×10−19 | 4.422×10−4 | −4.420×10−4 |
182Pb | 7.066 | 1.203×10−20 | 1.204×10−20 | 1.569×10−4 | −1.569×10−4 | 1.204×10−20 | 4.963×10−4 | −4.961×10−4 |
184Pb | 6.774 | 1.270×10−21 | 1.271×10−21 | 1.740×10−4 | −1.740×10−4 | 1.271×10−21 | 5.503×10−4 | −5.500×10−4 |
186Pb | 6.471 | 1.022×10−22 | 1.022×10−22 | 1.943×10−4 | −1.943×10−4 | 1.023×10−22 | 6.145×10−4 | −6.141×10−4 |
188Pb | 6.109 | 3.619×10−24 | 3.620×10−24 | 2.216×10−4 | −2.216×10−4 | 3.622×10−24 | 7.007×10−4 | −7.002×10−4 |
190Pb | 5.698 | 5.321×10−26 | 5.322×10−26 | 2.588×10−4 | −2.587×10−4 | 5.325×10−26 | 8.179×10−4 | −8.172×10−4 |
192Pb | 5.222 | 2.029×10−28 | 2.029×10−28 | 3.127×10−4 | −3.126×10−4 | 2.031×10−28 | 9.885×10−4 | −9.876×10−4 |
194Pb | 4.738 | 2.716×10−31 | 2.717×10−31 | 3.853×10−4 | −3.851×10−4 | 2.719×10−31 | 1.219×10−3 | −1.217×10−3 |
210Pb | 3.792 | 2.882×10−38 | 2.884×10−38 | 7.098×10−4 | −7.093×10−4 | 2.889×10−38 | 2.249×10−3 | −2.244×10−3 |
186Po | 8.501 | 3.967×10−17 | 3.968×10−17 | 1.147×10−4 | −1.147×10−4 | 3.969×10−17 | 3.628×10−4 | −3.626×10−4 |
188Po | 8.082 | 3.150×10−18 | 3.150×10−18 | 1.285×10−4 | −1.284×10−4 | 3.151×10−18 | 4.064×10−4 | −4.062×10−4 |
190Po | 7.693 | 2.446×10−19 | 2.446×10−19 | 1.435×10−4 | −1.435×10−4 | 2.447×10−19 | 4.549×10−4 | −4.547×10−4 |
192Po | 7.32 | 1.722×10−20 | 1.722×10−20 | 1.606×10−4 | −1.605×10−4 | 1.722×10−20 | 5.096×10−4 | −5.094×10−4 |
194Po | 6.987 | 1.337×10−21 | 1.337×10−21 | 1.788×10−4 | −1.787×10−4 | 1.338×10−21 | 5.674×10−4 | −5.670×10−4 |
196Po | 6.658 | 8.746×10−23 | 8.748×10−23 | 2.022×10−4 | −2.022×10−4 | 8.752×10−23 | 6.354×10−4 | −6.350×10−4 |
198Po | 6.31 | 3.753×10−24 | 3.754×10−24 | 2.276×10−4 | −2.276×10−4 | 3.755×10−24 | 7.189×10−4 | −7.184×10−4 |
200Po | 5.982 | 1.487×10−25 | 1.487×10−25 | 2.562×10−4 | −2.561×10−4 | 1.488×10−25 | 8.113×10−4 | −8.106×10−4 |
202Po | 5.701 | 7.528×10−27 | 7.530×10−27 | 2.878×10−4 | −2.877×10−4 | 7.535×10−27 | 9.096×10−4 | −9.088×10−4 |
204Po | 5.485 | 6.552×10−28 | 6.554×10−28 | 3.153×10−4 | −3.152×10−4 | 6.558×10−28 | 1.000×10−3 | −9.991×10−4 |
206Po | 5.327 | 1.021×10−28 | 1.022×10−28 | 3.417×10−4 | −3.416×10−4 | 1.022×10−28 | 1.082×10−3 | −1.081×10−3 |
208Po | 5.216 | 2.683×10−29 | 2.684×10−29 | 3.618×10−4 | −3.617×10−4 | 2.686×10−29 | 1.148×10−3 | −1.147×10−3 |
210Po | 5.408 | 3.406×10−28 | 3.407×10−28 | 3.424×10−4 | −3.423×10−4 | 3.410×10−28 | 1.089×10−3 | −1.087×10−3 |
212Po | 8.954 | 1.834×10−15 | 1.834×10−15 | 1.299×10−4 | −1.299×10−4 | 1.834×10−15 | 4.098×10−4 | −4.097×10−4 |
214Po | 7.834 | 2.035×10−18 | 2.036×10−18 | 1.709×10−4 | −1.708×10−4 | 2.036×10−18 | 5.410×10−4 | −5.407×10−4 |
216Po | 6.906 | 1.949×10−21 | 1.949×10−21 | 2.217×10−4 | −2.217×10−4 | 1.950×10−21 | 7.028×10−4 | −7.023×10−4 |
218Po | 6.115 | 1.403×10−24 | 1.404×10−24 | 2.874×10−4 | −2.873×10−4 | 1.405×10−24 | 9.091×10−4 | −9.082×10−4 |
194Rn | 7.862 | 2.725×10−19 | 2.726×10−19 | 1.457×10−4 | −1.457×10−4 | 2.726×10−19 | 4.613×10−4 | −4.611×10−4 |
196Rn | 7.617 | 5.195×10−20 | 5.196×10−20 | 1.578×10−4 | −1.578×10−4 | 5.198×10−20 | 4.994×10−4 | −4.991×10−4 |
198Rn | 7.349 | 7.196×10−21 | 7.197×10−21 | 1.722×10−4 | −1.721×10−4 | 7.200×10−21 | 5.443×10−4 | −5.440×10−4 |
200Rn | 7.043 | 4.433×10−22 | 4.434×10−22 | 1.874×10−4 | −1.873×10−4 | 4.436×10−22 | 5.921×10−4 | −5.918×10−4 |
202Rn | 6.774 | 4.638×10−23 | 4.639×10−23 | 2.056×10−4 | −2.056×10−4 | 4.641×10−23 | 6.494×10−4 | −6.489×10−4 |
204Rn | 6.547 | 6.223×10−24 | 6.224×10−24 | 2.231×10−4 | −2.231×10−4 | 6.227×10−24 | 7.056×10−4 | −7.051×10−4 |
206Rn | 6.384 | 1.425×10−24 | 1.425×10−24 | 2.386×10−4 | −2.385×10−4 | 1.426×10−24 | 7.548×10−4 | −7.543×10−4 |
208Rn | 6.261 | 4.470×10−25 | 4.471×10−25 | 2.521×10−4 | −2.521×10−4 | 4.474×10−25 | 7.974×10−4 | −7.967×10−4 |
210Rn | 6.159 | 1.691×10−25 | 1.691×10−25 | 2.644×10−4 | −2.643×10−4 | 1.692×10−25 | 8.363×10−4 | −8.356×10−4 |
212Rn | 6.385 | 1.812×10−24 | 1.812×10−24 | 2.515×10−4 | −2.514×10−4 | 1.813×10−24 | 7.943×10−4 | −7.937×10−4 |
214Rn | 9.208 | 1.609×10−15 | 1.609×10−15 | 1.245×10−4 | −1.245×10−4 | 1.610×10−15 | 3.948×10−4 | −3.947×10−4 |
216Rn | 8.198 | 4.316×10−18 | 4.316×10−18 | 1.597×10−4 | −1.596×10−4 | 4.318×10−18 | 5.029×10−4 | −5.026×10−4 |
218Rn | 7.263 | 5.514×10−21 | 5.516×10−21 | 2.046×10−4 | −2.046×10−4 | 5.518×10−21 | 6.464×10−4 | −6.460×10−4 |
220Rn | 6.405 | 3.190×10−24 | 3.191×10−24 | 2.658×10−4 | −2.657×10−4 | 3.193×10−24 | 8.409×10−4 | −8.402×10−4 |
222Rn | 5.59 | 5.796×10−28 | 5.798×10−28 | 3.558×10−4 | −3.557×10−4 | 5.803×10−28 | 1.125×10−3 | −1.124×10−3 |
202Ra | 7.88 | 7.889×10−20 | 7.890×10−20 | 1.562×10−4 | −1.562×10−4 | 7.893×10−20 | 4.936×10−4 | −4.934×10−4 |
204Ra | 7.637 | 1.297×10−20 | 1.297×10−20 | 1.679×10−4 | −1.678×10−4 | 1.297×10−20 | 5.312×10−4 | −5.309×10−4 |
206Ra | 7.415 | 1.881×10−21 | 1.881×10−21 | 1.790×10−4 | −1.789×10−4 | 1.882×10−21 | 5.657×10−4 | −5.654×10−4 |
208Ra | 7.273 | 6.633×10−22 | 6.634×10−22 | 1.888×10−4 | −1.888×10−4 | 6.637×10−22 | 5.976×10−4 | −5.972×10−4 |
210Ra | 7.151 | 2.501×10−22 | 2.502×10−22 | 1.984×10−4 | −1.984×10−4 | 2.503×10−22 | 6.272×10−4 | −6.268×10−4 |
214Ra | 7.273 | 7.154×10−22 | 7.156×10−22 | 1.973×10−4 | −1.972×10−4 | 7.159×10−22 | 6.249×10−4 | −6.245×10−4 |
216Ra | 9.526 | 1.982×10−15 | 1.983×10−15 | 1.195×10−4 | −1.195×10−4 | 1.983×10−15 | 3.766×10−4 | −3.764×10−4 |
218Ra | 8.54 | 7.503×10−18 | 7.505×10−18 | 1.492×10−4 | −1.492×10−4 | 7.507×10−18 | 4.717×10−4 | −4.714×10−4 |
220Ra | 7.594 | 1.186×10−20 | 1.186×10−20 | 1.900×10−4 | −1.899×10−4 | 1.187×10−20 | 6.012×10−4 | −6.009×10−4 |
222Ra | 6.678 | 7.823×10−24 | 7.825×10−24 | 2.516×10−4 | −2.515×10−4 | 7.829×10−24 | 7.962×10−4 | −7.956×10−4 |
224Ra | 5.789 | 1.089×10−27 | 1.090×10−27 | 3.431×10−4 | −3.430×10−4 | 1.090×10−27 | 1.086×10−3 | −1.085×10−3 |
226Ra | 4.871 | 5.845×10−33 | 5.847×10−33 | 4.937×10−4 | −4.934×10−4 | 5.854×10−33 | 1.561×10−3 | −1.559×10−3 |
208Th | 8.2 | 1.434×10−19 | 1.434×10−19 | 1.513×10−4 | −1.513×10−4 | 1.435×10−19 | 4.774×10−4 | −4.771×10−4 |
210Th | 8.069 | 4.880×10−20 | 4.881×10−20 | 1.574×10−4 | −1.574×10−4 | 4.883×10−20 | 4.969×10−4 | −4.966×10−4 |
212Th | 7.958 | 2.429×10−20 | 2.429×10−20 | 1.644×10−4 | −1.644×10−4 | 2.430×10−20 | 5.191×10−4 | −5.188×10−4 |
214Th | 7.827 | 8.913×10−21 | 8.915×10−21 | 1.714×10−4 | −1.714×10−4 | 8.918×10−21 | 5.419×10−4 | −5.416×10−4 |
216Th | 8.072 | 5.455×10−20 | 5.456×10−20 | 1.636×10−4 | −1.636×10−4 | 5.458×10−20 | 5.184×10−4 | −5.182×10−4 |
218Th | 9.849 | 2.468×10−15 | 2.468×10−15 | 1.130×10−4 | −1.130×10−4 | 2.469×10−15 | 3.583×10−4 | −3.582×10−4 |
220Th | 8.973 | 2.164×10−17 | 2.164×10−17 | 1.383×10−4 | −1.383×10−4 | 2.165×10−17 | 4.349×10−4 | −4.347×10−4 |
222Th | 8.133 | 1.374×10−19 | 1.375×10−19 | 1.712×10−4 | −1.712×10−4 | 1.375×10−19 | 5.406×10−4 | −5.403×10−4 |
224Th | 7.299 | 4.352×10−22 | 4.353×10−22 | 2.189×10−4 | −2.188×10−4 | 4.355×10−22 | 6.924×10−4 | −6.919×10−4 |
226Th | 6.453 | 2.227×10−25 | 2.228×10−25 | 2.836×10−4 | −2.835×10−4 | 2.229×10−25 | 8.964×10−4 | −8.956×10−4 |
228Th | 5.52 | 7.030×10−30 | 7.033×10−30 | 3.941×10−4 | −3.939×10−4 | 7.039×10−30 | 1.245×10−3 | −1.244×10−3 |
230Th | 4.77 | 2.344×10−34 | 2.345×10−34 | 5.420×10−4 | −5.417×10−4 | 2.348×10−34 | 1.715×10−3 | −1.712×10−3 |
232Th | 4.082 | 1.077×10−39 | 1.078×10−39 | 7.586×10−4 | −7.580×10−4 | 1.080×10−39 | 2.400×10−3 | −2.395×10−3 |
216U | 8.531 | 2.339×10−19 | 2.339×10−19 | 1.471×10−4 | −1.471×10−4 | 2.340×10−19 | 4.661×10−4 | −4.659×10−4 |
218U | 8.775 | 1.172×10−18 | 1.173×10−18 | 1.416×10−4 | −1.416×10−4 | 1.173×10−18 | 4.478×10−4 | −4.476×10−4 |
222U | 9.48 | 8.699×10−17 | 8.701×10−17 | 1.261×10−4 | −1.261×10−4 | 8.703×10−17 | 3.975×10−4 | −3.973×10−4 |
224U | 8.628 | 7.834×10−19 | 7.835×10−19 | 1.554×10−4 | −1.554×10−4 | 7.837×10−19 | 4.904×10−4 | −4.902×10−4 |
226U | 7.701 | 1.503×10−21 | 1.504×10−21 | 1.984×10−4 | −1.984×10−4 | 1.504×10−21 | 6.275×10−4 | −6.271×10−4 |
228U | 6.8 | 1.034×10−24 | 1.035×10−24 | 2.602×10−4 | −2.601×10−4 | 1.035×10−24 | 8.230×10−4 | −8.223×10−4 |
230U | 5.993 | 2.734×10−28 | 2.735×10−28 | 3.402×10−4 | −3.400×10−4 | 2.737×10−28 | 1.076×10−3 | −1.074×10−3 |
232U | 5.414 | 3.194×10−31 | 3.195×10−31 | 4.272×10−4 | −4.271×10−4 | 3.198×10−31 | 1.352×10−3 | −1.350×10−3 |
234U | 4.858 | 1.720×10−34 | 1.721×10−34 | 5.468×10−4 | −5.465×10−4 | 1.723×10−34 | 1.730×10−3 | −1.727×10−3 |
236U | 4.573 | 1.303×10−36 | 1.304×10−36 | 6.242×10−4 | −6.238×10−4 | 1.306×10−36 | 1.975×10−3 | −1.971×10−3 |
238U | 4.27 | 5.116×10−39 | 5.120×10−39 | 7.279×10−4 | −7.274×10−4 | 5.128×10−39 | 2.303×10−3 | −2.298×10−3 |
228Pu | 7.94 | 1.801×10−21 | 1.801×10−21 | 1.902×10−4 | −1.902×10−4 | 1.802×10−21 | 6.016×10−4 | −6.012×10−4 |
230Pu | 7.178 | 4.867×10−24 | 4.868×10−24 | 2.373×10−4 | −2.373×10−4 | 4.870×10−24 | 7.500×10−4 | −7.494×10−4 |
234Pu | 6.31 | 3.522×10−27 | 3.523×10−27 | 3.253×10−4 | −3.252×10−4 | 3.526×10−27 | 1.029×10−3 | −1.028×10−3 |
236Pu | 5.867 | 2.204×10−29 | 2.204×10−29 | 3.801×10−4 | −3.800×10−4 | 2.206×10−29 | 1.202×10−3 | −1.201×10−3 |
238Pu | 5.593 | 6.300×10−31 | 6.303×10−31 | 4.219×10−4 | −4.217×10−4 | 6.308×10−31 | 1.334×10−3 | −1.332×10−3 |
240Pu | 5.256 | 6.861×10−33 | 6.865×10−33 | 4.844×10−4 | −4.841×10−4 | 6.872×10−33 | 1.533×10−3 | −1.531×10−3 |
242Pu | 4.984 | 1.096×10−34 | 1.096×10−34 | 5.448×10−4 | −5.445×10−4 | 1.098×10−34 | 1.724×10−3 | −1.721×10−3 |
244Pu | 4.666 | 5.324×10−37 | 5.328×10−37 | 6.298×10−4 | −6.294×10−4 | 5.335×10−37 | 1.993×10−3 | −1.989×10−3 |
234Cm | 7.365 | 1.136×10−23 | 1.136×10−23 | 2.394×10−4 | −2.393×10−4 | 1.137×10−23 | 7.574×10−4 | −7.568×10−4 |
236Cm | 7.067 | 8.844×10−25 | 8.846×10−25 | 2.631×10−4 | −2.631×10−4 | 8.851×10−25 | 8.327×10−4 | −8.320×10−4 |
238Cm | 6.67 | 2.144×10−26 | 2.145×10−26 | 2.990×10−4 | −2.989×10−4 | 2.146×10−26 | 9.458×10−4 | −9.449×10−4 |
240Cm | 6.398 | 1.093×10−27 | 1.093×10−27 | 3.272×10−4 | −3.271×10−4 | 1.094×10−27 | 1.035×10−3 | −1.034×10−3 |
242Cm | 6.216 | 1.350×10−28 | 1.351×10−28 | 3.494×10−4 | −3.493×10−4 | 1.352×10−28 | 1.106×10−3 | −1.105×10−3 |
244Cm | 5.902 | 3.289×10−30 | 3.290×10−30 | 3.914×10−4 | −3.913×10−4 | 3.293×10−30 | 1.239×10−3 | −1.237×10−3 |
246Cm | 5.475 | 1.170×10−32 | 1.170×10−32 | 4.593×10−4 | −4.591×10−4 | 1.172×10−32 | 1.454×10−3 | −1.451×10−3 |
248Cm | 5.162 | 1.189×10−34 | 1.190×10−34 | 5.228×10−4 | −5.226×10−4 | 1.191×10−34 | 1.655×10−3 | −1.652×10−3 |
238Cf | 8.13 | 8.684×10−22 | 8.685×10−22 | 2.019×10−4 | −2.019×10−4 | 8.689×10−22 | 6.384×10−4 | −6.380×10−4 |
240Cf | 7.711 | 3.627×10−23 | 3.628×10−23 | 2.268×10−4 | −2.267×10−4 | 3.629×10−23 | 7.176×10−4 | −7.170×10−4 |
242Cf | 7.517 | 6.678×10−24 | 6.680×10−24 | 2.406×10−4 | −2.405×10−4 | 6.683×10−24 | 7.604×10−4 | −7.598×10−4 |
244Cf | 7.329 | 1.365×10−24 | 1.365×10−24 | 2.556×10−4 | −2.556×10−4 | 1.366×10−24 | 8.088×10−4 | −8.082×10−4 |
246Cf | 6.862 | 1.739×10−26 | 1.740×10−26 | 2.941×10−4 | −2.940×10−4 | 1.741×10−26 | 9.310×10−4 | −9.301×10−4 |
248Cf | 6.361 | 8.377×10−29 | 8.380×10−29 | 3.449×10−4 | −3.448×10−4 | 8.386×10−29 | 1.091×10−3 | −1.090×10−3 |
250Cf | 6.129 | 5.615×10−30 | 5.617×10−30 | 3.746×10−4 | −3.745×10−4 | 5.622×10−30 | 1.186×10−3 | −1.185×10−3 |
252Cf | 6.217 | 1.601×10−29 | 1.602×10−29 | 3.682×10−4 | −3.681×10−4 | 1.603×10−29 | 1.165×10−3 | −1.164×10−3 |
254Cf | 5.927 | 4.888×10−31 | 4.890×10−31 | 4.096×10−4 | −4.095×10−4 | 4.894×10−31 | 1.297×10−3 | −1.295×10−3 |
246Fm | 8.379 | 9.890×10−22 | 9.892×10−22 | 1.984×10−4 | −1.984×10−4 | 9.897×10−22 | 6.268×10−4 | −6.264×10−4 |
248Fm | 7.995 | 5.730×10−23 | 5.731×10−23 | 2.195×10−4 | −2.194×10−4 | 5.734×10−23 | 6.953×10−4 | −6.948×10−4 |
250Fm | 7.557 | 1.480×10−24 | 1.480×10−24 | 2.480×10−4 | −2.479×10−4 | 1.481×10−24 | 7.838×10−4 | −7.832×10−4 |
252Fm | 7.154 | 3.803×10−26 | 3.804×10−26 | 2.788×10−4 | −2.787×10−4 | 3.807×10−26 | 8.819×10−4 | −8.812×10−4 |
254Fm | 7.307 | 1.634×10−25 | 1.634×10−25 | 2.697×10−4 | −2.696×10−4 | 1.635×10−25 | 8.545×10−4 | −8.537×10−4 |
256Fm | 7.025 | 1.154×10−26 | 1.154×10−26 | 2.950×10−4 | −2.950×10−4 | 1.155×10−26 | 9.336×10−4 | −9.327×10−4 |
252No | 8.549 | 7.214×10−22 | 7.216×10−22 | 1.976×10−4 | −1.976×10−4 | 7.219×10−22 | 6.243×10−4 | −6.239×10−4 |
254No | 8.226 | 6.424×10−23 | 6.425×10−23 | 2.150×10−4 | −2.150×10−4 | 6.428×10−23 | 6.791×10−4 | −6.786×10−4 |
256No | 8.582 | 9.518×10−22 | 9.520×10−22 | 1.995×10−4 | −1.995×10−4 | 9.524×10−22 | 6.311×10−4 | −6.307×10−4 |
256Rf | 8.926 | 2.009×10−21 | 2.010×10−21 | 1.847×10−4 | −1.846×10−4 | 2.010×10−21 | 5.851×10−4 | −5.848×10−4 |
258Rf | 9.196 | 1.318×10−20 | 1.318×10−20 | 1.759×10−4 | −1.759×10−4 | 1.318×10−20 | 5.576×10−4 | −5.573×10−4 |
260Sg | 9.901 | 2.377×10−19 | 2.378×10−19 | 1.543×10−4 | −1.543×10−4 | 2.378×10−19 | 4.888×10−4 | −4.886×10−4 |
266Hs | 10.346 | 8.033×10−19 | 8.034×10−19 | 1.461×10−4 | −1.461×10−4 | 8.037×10−19 | 4.623×10−4 | −4.621×10−4 |
268Hs | 9.76 | 2.387×10−20 | 2.387×10−20 | 1.649×10−4 | −1.648×10−4 | 2.388×10−20 | 5.221×10−4 | −5.218×10−4 |
270Hs | 9.07 | 2.579×10−22 | 2.580×10−22 | 1.920×10−4 | −1.919×10−4 | 2.581×10−22 | 6.093×10−4 | −6.089×10−4 |
270Ds | 11.117 | 1.344×10−17 | 1.344×10−17 | 1.298×10−4 | −1.298×10−4 | 1.344×10−17 | 4.102×10−4 | −4.100×10−4 |
282Ds | 9.15 | 7.655×10−23 | 7.657×10−23 | 1.992×10−4 | −1.992×10−4 | 7.660×10−23 | 6.296×10−4 | −6.292×10−4 |
286Cn | 9.24 | 3.165×10−23 | 3.166×10−23 | 2.001×10−4 | −2.000×10−4 | 3.167×10−23 | 6.316×10−4 | −6.312×10−4 |
286Fl | 10.36 | 8.791×10−21 | 8.792×10−21 | 1.592×10−4 | −1.592×10−4 | 8.795×10−21 | 5.030×10−4 | −5.028×10−4 |
288Fl | 10.076 | 1.610×10−21 | 1.610×10−21 | 1.694×10−4 | −1.694×10−4 | 1.611×10−21 | 5.365×10−4 | −5.362×10−4 |
290Fl | 9.86 | 4.198×10−22 | 4.199×10−22 | 1.789×10−4 | −1.788×10−4 | 4.200×10−22 | 5.651×10−4 | −5.647×10−4 |
290Lv | 11 | 9.093×10−20 | 9.094×10−20 | 1.444×10−4 | −1.444×10−4 | 9.097×10−20 | 4.565×10−4 | −4.563×10−4 |
292Lv | 10.791 | 2.750×10−20 | 2.751×10−20 | 1.507×10−4 | −1.507×10−4 | 2.752×10−20 | 4.770×10−4 | −4.768×10−4 |
294Og | 11.87 | 2.718×10−18 | 2.719×10−18 | 1.271×10−4 | −1.271×10−4 | 2.719×10−18 | 4.020×10−4 | −4.018×10−4 |
Table 1 shows that laser electric fields with intensities of I=1023W/cm2 and I=1024W/cm2 can cause a slight change in the α decay penetration probability of most parent nuclei. However, 108Xe is not affected by the laser electric field because it has a mass number twice the proton number, resulting in Zeff=0. This makes 108Xe an exception, with δ P and δ T values of zero for any laser field intensity. Moreover, the parent nucleus that was the most sensitive to the laser electric field was 144Nd, which had the lowest decay energy. For a fixed laser intensity, the smaller the decay energy, the larger the relative rate of change of the α-particle energy, according to Eq. (18). The schematics in Fig. 1, show that a smaller decay energy corresponds to a larger rate of change of the penetration probability P. This supports the findings of [72], which suggested that decay energy is inversely proportional to δ P. Although 144Nd already corresponds to δ T in the order of thousands of parts in the case of I=1024W/cm2, the angle between the laser electric field direction and the α particle-emission direction was not always zero in the experiments. Therefore, it is more meaningful to study the effects of a laser on the emitted α particles in any direction.
In this study, we investigated the correlation between δ P and ψ for ground-state even–even nuclei when I=1023W/cm2. The calculation results are shown in Fig. 2, where ψ ranges from zero to 2π, and each blue line represents the variation of a different parent nucleus δ P with ψ. This figure shows that δ P has a maximum value when ψ=0, that is, the α particle-emission direction is the same as the laser electric field direction. In contrast, when the direction of the α particle emission is opposite to the direction of the laser electric field, that is, ψ=π, δ P has a minimum value, and its absolute value is almost equal to the maximum value of δ P. Moreover, the α particle-emission and laser electric field directions are perpendicular to each other in the case of ψ=1/2π or ψ=3/2π and the laser has almost no effect on the α decay penetration probability. Although δ P varies for different nuclei at the same laser intensity, it exhibits a similar trend in the variation of δ P with ψ, which is similar to that of cosψ with ψ, indicating a possible linear relationship between δ P and cosψ.
-202402/1001-8042-35-02-010/alternativeImage/1001-8042-35-02-010-F002.jpg)
Practical experiments involve studying the interactions between lasers and multiple nuclei (nuclei population). However, previous studies on laser–nucleus interactions have focused on individual nuclei and overlooked the effect of the laser on the nuclei population [71]. The effect of the laser on the penetration probability of α decay is closely related to the angle between the laser and α particle-emission direction, making the incident direction of the laser an interesting topic to explore. In this study, we investigated the average effect on the penetration probability δ Pavg of the nuclei population with a laser intensity of I=1023W/cm2 in a specific direction. We assumed that the number of parent nuclei was sufficiently large and that the emission direction of the particles was entirely random. The calculation results are shown in Fig. 3, where the horizontal coordinate represents the mass number of the parent nuclei and the vertical coordinate represents the corresponding δ Pavg.
-202402/1001-8042-35-02-010/alternativeImage/1001-8042-35-02-010-F003.jpg)
Because the direction of the laser is fixed and the emission direction of the α particle is random, the effect of the laser on the α decay penetration probability of a nucleus in the nuclei population depends on ψ. When cosψ > 0, the laser increases the α decay penetration probability; however, when cosψ < 0, the laser decreases it. This implies that a fixed laser direction has both suppressive and facilitative effects on the α decay penetration probability of the parent nucleus in the nuclei population. If the relationship between δ P and the laser electric field is linear, then the average value of the rate of change of the penetration probability in all directions is zero. However, Eq. (2) is an exponential function, and the absolute value of δ P corresponding to the two cases (e.g., ψ = 0 and ψ = π) in which the α particle emission direction is at a completely opposite angle to the laser direction is different for the same nucleus. To further visualize this point, considering the nucleus 144Nd, we calculated the absolute value of δ P corresponding to the case of increasing or decreasing Eα using the same value, and the calculations were plotted in Fig. 4. In this figure, the horizontal axis represents the absolute value of the change in kinetic energy, and the vertical axis represents the absolute value of the change in penetration probability. For any parent nucleus, as Eα increases, the penetration probability increases. Conversely, as Eα decreases, the penetration probability also decreases. In addition, we provide the absolute value of δ P corresponding to the case of 144Nd for increasing or decreasing the same value of V in Fig. 5. Different from Fig. 4, the increase in V led to a decrease in the probability of penetration in this figure.
-202402/1001-8042-35-02-010/alternativeImage/1001-8042-35-02-010-F004.jpg)
-202402/1001-8042-35-02-010/alternativeImage/1001-8042-35-02-010-F005.jpg)
As shown in Figs. 4 and 5, for the parent nucleus 144Nd, the absolute value of P calculated by decreasing the value of V and increasing the value of Eα (which corresponds to the laser direction being the same as the direction of particle emission) is greater than the absolute value of P calculated by increasing the value of V and decreasing the value of Eα (which corresponds to the laser direction being the opposite of the direction of particle emission) for the same transverse coordinates. This means that δ Pavg obtained by averaging over all α emission directions should be greater than zero for the parent nucleus 144Nd. This conclusion is also supported in Fig. 3, which shows that the suppression and promotion of the α decay penetration probability of the nuclei population by the laser does not cancel completely; a small amount δ Pavg is retained, which is three orders of magnitude lower than δ P at cosψ=0 under the same laser conditions. This indicates that the relationship between the laser electric field intensity E and δ P is not completely linear.
Interestingly, δ Pavg remains positive for most nuclei populations, instead of being equally distributed around zero. To explain this phenomenon, we consider the Taylor expansion in Eq. (2) [71].
Summary
In this study, the effect of an extreme laser field on the α decay of ground-state even–even nuclei within a deformed Gamow-like model, which had only one adjustable parameter, was investigated. Results revealed that state-of-the-art lasers have a minor impact on the α decay penetration probability. Moreover, the relationship between ψ and the rate of change of the α decay penetration probability for different nuclei was studied. Furthermore, the average effect of extreme laser fields on the α decay penetration probability of many nuclei with arbitrary α particle-emission angles was calculated. From the results, it was inferred that circularly polarized lasers must be used to obtain a more significant average rate of change in the α decay half-life of nuclei populations in future experiments.
New behaviors of α-particle preformation factors near doubly magic 100Sn*
. Chin. Phys. C 46, 061001 (2022). https://doi.org/10.1088/1674-1137/ac5a9fProbing the robustness of N=126 shell closure via the α decay systematics
. Eur. Phys. J. A 58, 165 (2022). https://doi.org/10.1140/epja/s10050-022-00813-8Systematics of α-preformation factors in closed-shell regions
. Nucl. Sci. Tech. 27, 150 (2016). https://doi.org/10.1007/s41365-016-0151-1Exploring the sensitivity of α -decay half-life to neutron skin thickness for nuclei around 208Pb
. Nucl. Sci. Tech. 28, 22 (2016). https://doi.org/10.1007/s41365-016-0174-7Zur quantentheorie des atomkernes
. Z. Phys. 51, 204 (1928). https://doi.org/10.1007/BF01343196Wave mechanics and radioactive disintegration
. Nature. 122, 439 (1928). https://doi.org/10.1038/122439a0Universal decay rule for reduced widths
. Phys. Rev. C 80, 024310 (2009). https://doi.org/10.1103/PhysRevC.80.024310Systematic study of heavy cluster emission from 210–226Ra isotopes
. Nucl. Phys. A 882, 49 (2012). https://doi.org/10.1016/j.nuclphysa.2012.04.001Proton radioactivity within a generalized liquid drop model
. Phys. Rev. C 79, 054330 (2009). https://doi.org/10.1103/PhysRevC.79.054330Competition between α-decay and spontaneous fission for superheavy nuclei
. J. Phys. G Nucl. Part. Phys. 42, 085101 (2015). https://doi.org/10.1088/0954-3899/42/8/085101Signatures of the Z=82 shell closure in α-decay process
. Phys. Rev. Lett. 110, 242502 (2013). https://doi.org/10.1103/PhysRevLett.110.242502Synthesis of a new element with atomic number Z=117
. Phys. Rev. Lett. 104, 142502 (2010). https://doi.org/10.1103/PhysRevLett.110.242502Description of structure and properties of superheavy nuclei
. Prog. Part. Nucl. Phys. 58, 292 (2007). https://doi.org/10.1016/j.ppnp.2006.05.001Quantum tunneling in nuclear fusion
. Rev. Mod. Phys. 70, 77 (1998). https://doi.org/10.1103/RevModPhys.70.77Investigation of decay modes of superheavy nuclei
. Nucl. Sci. Tech. 32, 130 (2021). https://doi.org/10.1007/s41365-021-00967-yProperties of Z=114 super-heavy nuclei
. Nucl. Sci. Tech. 32, 55 (2021). https://doi.org/10.1007/s41365-021-00899-7New Geiger-Nuttall law for α decay of heavy nuclei
. Phys. Rev. C 85, 044608 (2012). https://doi.org/10.1103/PhysRevC.85.044608New calculations of α-decay half-lives by the Viola-Seaborg formula
. Eur. Phys. J. A 26, 69 (2005). https://doi.org/10.1140/epja/i2005-10142-yNew isotope 207Th and odd-even staggering in αdecay energies for nuclei with Z<82 and N>126
. Phys. Rev. C 105, L051302 (2022). https://doi.org/10.1103/PhysRevC.105.L051302α decay of the new isotope 204Ac
. Phys. Lett. B 834, 137484 (2022). https://doi.org/10.1016/j.physletb.2022.137484Reaction 55Mn + 159Tb : preparation for the synthesis of new elements*
. Chin. Phys. C 47, 054001 (2023). https://doi.org/10.1088/1674-1137/acb9e2RRETRACTED: A shorter 146Sm half-life measured and implications for 146Sm-142Nd chronology in the solar system
. Science 335, 1614 (2012). https://doi.org/10.1126/science.1215510Revised rates for the stellar triple-α process from measurement of 12C nuclear resonances
. Nature 433, 136 (2005). https://doi.org/10.1038/nature03219Correlation between α-particle preformation factor and α decay energy
. Phys. Lett. B 816, 136247 (2021). https://doi.org/10.1016/j.physletb.2021.136247Preformation factor for α particles in isotopes near N=Z
. Phys. Rev. C 89, 047301 (2014). https://doi.org/10.1103/PhysRevC.89.047301α decay half-lives of new superheavy nuclei within a generalized liquid drop model
. Phys. Rev. C 74, 017304 (2006). https://doi.org/10.1103/PhysRevC.74.017304Effective liquid drop description for the exotic decay of nuclei
. Phys. Rev. C 48, 2409 (1993). https://doi.org/10.1103/PhysRevC.48.2409Systematic study of α decay half-lives within the Generalized Liquid Drop Model with various versions of proximity energies *
. Chin. Phys. C 45, 024104 (2021). https://doi.org/10.1088/1674-1137/abcc5aHalf-lives for α and cluster radioactivity within a Gamow-like model
. Phys. Rev. C 87, 024308 (2013). https://doi.org/10.1103/PhysRevC.87.024308Half-lives for α and cluster radioactivity in a simple model
. Phys. Scr. T154, 014029 (2013). https://doi.org/10.1088/0031-8949/2013/T154/014029Systematic study of α decay half-lives based on Gamow–like model with a screened electrostatic barrier
. Nucl. Phys. A 987, 350 (2019). https://doi.org/10.1016/j.nuclphysa.2019.05.002New look at α decay of heavy nuclei
. Phys. Rev. Lett. 65, 2975 (1990). https://doi.org/10.1103/PhysRevLett.65.2975Global calculation of α-decay half-lives with a deformed density-dependent cluster model
. Phys. Rev. C 74, 014304 (2006). https://doi.org/10.1103/PhysRevC.74.014304Favored α-decays of medium mass nuclei in density-dependent cluster model
. Nucl. Phys. A 760, 303 (2005). https://doi.org/10.1016/j.nuclphysa.2005.06.011Systematic study of α decay half-lives for even-even nuclei within a two-potential approach
. Phys. Rev. C 93, 034316 (2016). https://doi.org/10.1103/PhysRevC.93.034316Systematic study of unfavored α-decay half-lives of closed-shell nuclei related to ground and isomeric states
. Phys. Rev. C 96, 024318 (2017). https://doi.org/10.1103/PhysRevC.96.024318Systematic study of α decay of nuclei around the Z=82, N=126 shell closures within the cluster-formation model and proximity potential 1977 formalism
. Phys. Rev. C 97, 044322 (2018). https://doi.org/10.1103/PhysRevC.97.044322New deformed model of α-decay half-lives with a microscopic potential
. Phys. Rev. C 73, 041301 (2006). https://doi.org/10.1103/PhysRevC.73.041301Alpha-decay of deformed superheavy nuclei as a probe of shell closures
. Nucl. Phys. A 958, 202 (2017). https://doi.org/10.1016/j.nuclphysa.2016.11.010Theoretical calculations on α-decay half-lives by the density-dependent cluster model
. Mod. Phys. Lett. A 23, 2597 (2008). https://doi.org/10.1142/S0217732308029885Unified formula of half-lives for α decay and cluster radioactivity
. Phys. Rev. C 78, 044310 (2008). https://doi.org/10.1103/PhysRevC.78.044310Nuclear systematics of the heavy elements—II Lifetimes for alpha, beta and spontaneous fission decay
. J. Inorg. Nucl. Chem. 28, 741 (1966). https://doi.org/10.1016/0022-1902(66)80412-8Alpha emission and spontaneous fission through quasi-molecular shapes
. J. Phys. G: Nucl. Part. Phys. 26, 1149 (2000). https://doi.org/10.1088/0954-3899/26/8/305Microscopic mechanism of charged-particle radioactivity and generalization of the Geiger-Nuttall law
. Phys. Rev. C 80, 044326 (2009). https://doi.org/10.1103/PhysRevC.80.044326Universal Decay Law in Charged-Particle Emission and Exotic Cluster Radioactivity
. Phys. Rev. Lett. 103, 072501 (2009). https://doi.org/10.1103/PhysRevLett.103.072501Single universal curve for cluster radioactivities and α decay
. Phys. Rev. C 83, 014601 (2011). https://doi.org/10.1103/PhysRevC.83.014601Compression of amplified chirped optical pulses
. Opt. Comm. 56, 219 (1985). https://doi.org/10.1016/0030-4018(85)90120-8Inertial-confinement fusion with lasers
. Nat. Phys. 12, 435 (2016). https://doi.org/10.1038/nphys3736Time constants in thermal laser medicine
. Laser. Surg. Med. 9, 405 (1989). https://doi.org/10.1002/lsm.1900090414Nuclear physics with 10 PW laser beams at extreme light infrastructure–nuclear physics (ELI-NP)
. Eur. Phys. J-Spec. Top. 223, 1221 (2014). https://doi.org/10.1140/epjst/e2014-02176-0Electron-positron pair production in ultrastrong laser fields
. Matter Radiat. Extrem. 2, 225 (2017). https://doi.org/10.1016/j.mre.2017.07.002Extreme brightness laser-based neutron pulses as a pathway for investigating nucleosynthesis in the laboratory
. Matter Radiat. Extrem. 4, 054402 (2019). https://doi.org/10.1063/1.5081666Optimization of hole-boring radiation pressure acceleration of ion beams for fusion ignition
. Matter Radiat. Extrem. 3, 28 (2018). https://doi.org/10.1016/j.mre.2017.09.002Realization of laser intensity over 1023W/cm2
. Optica 8, 630 (2021). https://doi.org/10.1364/OPTICA.420520Laser-assisted proton radioactivity of spherical and deformed nuclei
. J. Phys. G: Nucl. Part. Phys. 46, 115106 (2019). https://doi.org/10.1088/1361-6471/ab1d7cCurrent status and highlights of the ELI-NP research program
. Matter Radiat. Extrem. 5, 024402 (2020). https://doi.org/10.1063/1.5093535Über Elementarakte mit zwei Quantensprüngen
. Ann. Phys., Lpz. 401, 273 (1931). https://doi.org/10.1002/andp.19314010303Nuclear fission in intense laser fields
. Phys. Rev. C 102, 064629 (2020). https://doi.org/10.1103/PhysRevC.102.064629Exciting the isomeric 229Th nuclear state via laser-driven electron recollision
. Phys. Rev. Lett. 127, 052501 (2021). https://doi.org/10.1103/PhysRevLett.127.052501Enhanced deuterium-tritium fusion cross sections in the presence of strong electromagnetic fields
. Phys. Rev. C 100, 064610 (2019). https://doi.org/10.1103/PhysRevC.100.064610Coupled-channels analysis of the α decay in strong electromagnetic fields
. Phys. Rev. C 101, 044304 (2020). https://doi.org/10.1103/PhysRevC.101.044304Deuterium-tritium fusion process in strong laser fields: Semiclassical simulation
. Phys. Rev. C 104, 044614 (2021). https://doi.org/10.1103/PhysRevC.104.044614Femtosecond pumping of nuclear isomeric states by the Coulomb collision of ions with quivering electrons
. Phys. Rev. Lett. 128, 052501 (2022). https://doi.org/10.1103/PhysRevLett.128.052501the refractive scattering of loosely bound nuclei in arbitrarily polarized laser fields
. Phys. Rev. C 106, 034612 (2022). https://doi.org/10.1103/PhysRevC.106.034612Nuclear recollisions in laser-assisted α decay
. Phys. Lett. B 723, 401 (2013). https://doi.org/10.1016/j.physletb.2013.05.025α-Decay in ultra-intense laser fields
. J. Phys. G Nucl. Part. Phys. 40, 095101 (2013). https://doi.org/10.1088/0954-3899/40/9/095101Speeding of α decay in strong laser fields
. Open Phys. 14, 81 (2016). https://doi.org/10.1515/phys-2016-0001α decay in intense laser fields: Calculations using realistic nuclear potentials
. Phys. Rev. C 99, 044610 (2019). https://doi.org/10.1103/PhysRevC.99.044610Three dimensional α-tunneling in intense laser fields
. J. Phys. G Nucl. Part. Phys. 45, 045103 (2018). https://doi.org/10.1088/1361-6471/aab0d5α Decays in superstrong static electric fields*
. Commun. Theor. Phys. 70, 559 (2018). https://doi.org/10.1088/0253-6102/70/5/559Laser-assisted deformed α decay of the ground state even-even nuclei
. arXiv preprint arXiv: 2307.02095 (2023). https://doi.org/10.48550/arXiv.2307.02095Systematic study of laser-assisted proton radioactivity from deformed nuclei
. Phys. Rev. C 105, 024312 (2022). https://doi.org/10.1103/PhysRevC.105.024312Dynamically assisted nuclear fusion
. Phys. Rev. C 100, 041601 (2019). https://doi.org/10.1103/PhysRevC.100.041601Fraunhofer and refractive scattering of heavy ions in strong laser fields
. Eur. Phys. J. A 54, 90 (2018). https://doi.org/10.1140/epja/i2018-12525-3Half-lives for proton emission and α decay within the deformed Gamow-like model
. J. Phys. G: Nucl. Part. Phys. 50, 085102 (2023). https://doi.org/10.1088/1361-6471/acdfebCoulomb interaction between spherical and deformed nuclei
. Phys. Rev. C 61, 044607 (2000). https://doi.org/10.1103/PhysRevC.61.044607On the Coulomb interaction between spherical and deformed nuclei
. Phys. Lett. B 563, 53 (2003). https://doi.org/10.1016/S0370-2693(03)00600-2Coulomb potentials between spherical and deformed nuclei
. Chin. Phys. Lett. 25, 1247 (2008). https://doi.org/10.1088/0256-307x/25/4/023α-decay half-lives and Qa values of superheavy nuclei
. Phys. Rev. C 81, 064309 (2010). https://doi.org/10.1103/PhysRevC.81.064309α decay of nuclei in extreme cases
. Phys. Rev. C 69, 024614 (2004). https://doi.org/10.1103/PhysRevC.69.024614Achieving the laser intensity of 5.5 × 1023W/cm2 with a wavefront-corrected multi-PW laser
. Opt. Express 27, 20412 (2019). https://doi.org/10.1364/OE.27.020412The AME 2020 atomic mass evaluation (I). Evaluation of the input data and adjustment procedures.
Chin. Phys. C 45, 030002 (2021). https://doi.org/10.1088/1674-1137/abddb0The AME 2020 atomic mass evaluation (II). Tables, graphs, and References.
Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddafNuclear ground-state masses and deformations: FRDM(2012)
. Atom. Data Nucl. Data 109, 1 (2016). https://doi.org/10.1016/j.adt.2015.10.002The authors declare that they have no competing interests.