Introduction
Over the past two decades, the advent of radioactive ion beam facilities worldwide, including those in Dubna, Rikagaku Kenkyusho (RIKEN), Heavy Ion Research Facility in Lanzhou (HIRFL), Berkeley, GSI, and Grand Accelerateur National d'Ions Lourds (GANIL), has spearheaded the discovery of numerous decay modes and exotic nuclei [1-7]. As one of the main decay modes of superheavy nuclei, α decay has attracted considerable attention in the synthesis and research on superheavy nuclei [8-12]. Theoretically, α decay is one of the early successes in quantum mechanics. Gamow [13] and Condon and Gurney [14] independently used the barrier tunneling theory based on quantum mechanics to calculate α decay lifetimes. Experimentally, α decay spectra of neutron-deficient nuclei and heavy and superheavy nuclei provide important nuclear structural information, which makes them irreplaceable for researchers to understand the structure and stability of heavy and superheavy nuclei [15]. The study of α decay processes is paramount for addressing critical challenges, such as deciphering the nuclear cluster structure within superheavy nuclei [16-20], investigating the chronology of the solar system [21], and finding stable superheavy element islands [2].
Laser-nuclear interactions have become a popular topic in nuclear physics research because of their rapidly increasing laser energy and peak intensity. In laboratories, the peak intensity of the produced laser has reached an impressive level of 1023 W/cm2 [22]. In addition, the Extreme Light Infrastructure for Nuclear Physics (ELI-NP) [23, 24] and the Shanghai Superintense Ultrafast Laser Facility (SULF) [25, 26] are expected to further increase the peak laser intensity by one or two orders of magnitude from the current level. These developments provide the basis for a wider range of laser applications [27-29] and the ideal conditions for laser-nuclear interaction studies. Experimentally, Feng et al. presented the femtosecond pumping of isomeric nuclear states by the Coulomb excitation of ions with quivering electrons induced by laser fields [30]. Moreover, Shvyd'ko et al. used the resonant X-ray excitation of the 45Sc isomer using an X-ray free-electron laser [31]. They determined the transition energy with an uncertainty two orders of magnitude smaller. Numerous theoretical studies have focused on the effect of lasers on the decay or fusion of nuclei [23, 32-38]. However, it is worth noting that most such investigations have predominantly centered on the influence of lasers on even-even nuclei. The effect of laser fields on the half-life of odd-A nuclei is yet to be extensively explored.
Recently, we performed quantitative calculations of the α-decay half-life of laser-affected even-even nuclei based on the semi-classical Wentzel-Kramers-Brillouin (WKB) approximation [39]. Our current work expands this to determine the effect of lasers on the α-decay half-life of odd-A nuclei. To accurately calculate the laser-nucleus interaction, the deformation of the nuclei must be considered because the introduced electric dipole term is closely related to the vector angle between E(t) and r. We systematically analyzed the rate of change in the α-decay half-life of deformed ground-state odd-A nuclei with a proton number of
The remainder of this paper is organized as follows. In the next section, the theoretical framework for calculating the α-decay half-life in ultraintense laser fields is described in detail. Detailed calculation results and discussion are provided in Sect. 3. Section 4 provides the summary.
Theoretical framework
The theoretical method
α-decay half-life T1/2, which is an important indicator of nuclear stability, can be expressed as follows:
Considering the impact of nucleus deformation, the total penetration probability P is determined by averaging Pφ across all the orientations. This methodology is frequently employed to compute α decay and fusion reactions [42-46] and is succinctly expressed as follows [47]:
The deformed Coulomb potential is obtained using the double-folding mode, which is given by [47]
In this study, the emitted α-daughter nucleus nuclear potential
Laser-nucleus interaction
Quasistatic approximation
The full width at half maximum (FWHM) of laser pulses with peak intensities exceeding 1023 W/cm2 currently available in the laboratory, is approximately 19.6 fs (= 1.96 × 10-14 s) [22]. The laser cycles produced by a near-infrared laser with a wavelength of approximately 800 nm and an X-ray free-electron laser [56] with a photon energy of 10 keV are approximately 10-15 s and 10-19 s, respectively. For α decay, the emitted α particles oscillate back and forth at high frequencies within the parent nuclei, with a small probability of tunneling out whenever the preformed α particles hit the potential wall. Because the typical decay energy for α decay is approximately several MeV, the velocity of the preformed α particles is approximately 107 m/s. In addition, the size of the parent nucleus is approximately 1 fm, and the frequency of the oscillations can be roughly estimated to be 1022 Hz. The length of the tunnel path is less than 100 fm, and the time for the emitted α particles to pass through the tunnel is less than 10-20 s. From a quantum mechanical perspective, the collision frequency ν of the emitted α particles can be calculated using the oscillation frequency as follows: [57]
Finally, the kinetic energy of the emitted α particles is only a few MeV. They move much slower than light in vacuum. This implies that the effect of the laser electric field on the emitted α particles is significantly larger than that of the laser magnetic field. Therefore, the magnetic component of the laser field is neglected in this study.
Relative motion of daughter nuclei and α particles in laser fields in center-of-mass coordinates
In the framework of the quasi-static approximation, the interaction between the daughter nucleus and emitted α particle can be effectively described using the time-dependent Schrödinger equation (TDSE) [61], which can be expressed as follows:
For the center-of-mass coordinates (
Laser-nucleus interaction
The real laser electric field should be represented as a linearly polarized Gaussian plane waveform, which can be written as follows:
In the context of the interaction between laser electric fields and nuclear processes, it is pertinent to consider the influence of laser electric fields on the decay energy Qα. The alteration in the decay energy
Results and discussion
In this study, the least-squares principle was used to refit the adjustable parameters within the WS nuclear potential. Sα was approximated to be 0.35 based on Ref. [55], whereas the deformation parameters β2, β4, and β6 utilized for the fitting process were obtained from FRDM2012 [62]. To ensure accuracy, experimental data on α decay energy Qα, spin, parity, and α decay half-lives were gathered from the latest evaluated atomic mass table AME2020 [63, 64] and the latest evaluated nuclear properties table NUBASE2020 [65]. The standard deviation σ, representing the difference between theoretical and experimental α decay half-lives, is calculated as
Nucleus | Qα(MeV) | l | lgTexp (s) | lgTcal (s) | δP23 | δT23 | δP24 | δT24 |
---|---|---|---|---|---|---|---|---|
105Te | 5.069 | 0 | -6.199 | -7.582 | 8.400×10-5 | -8.400×10-5 | 2.700×10-4 | -2.700×10-4 |
109Te | 3.198 | 0 | 2.051 | 1.789 | 2.171×10-4 | -2.171×10-4 | 6.871×10-4 | -6.866×10-4 |
109I | 3.918 | 2 | -0.191 | -1.648 | 1.426×10-4 | -1.426×10-4 | 4.571×10-4 | -4.569×10-4 |
113I | 2.707 | 0 | 7.300 | 6.582 | 3.295×10-4 | -3.294×10-4 | 1.048×10-3 | -1.047×10-3 |
109Xe | 4.217 | 0 | -1.886 | -2.961 | 1.205×10-4 | -1.204×10-4 | 3.804×10-4 | -3.802×10-4 |
145Pm | 2.322 | 0 | 17.300 | 17.266 | 8.836×10-4 | -8.828×10-4 | 2.790×10-3 | -2.782×10-3 |
147Sm | 2.311 | 0 | 18.527 | 18.259 | 9.104×10-4 | -9.096×10-4 | 2.876×10-3 | -2.868×10-3 |
147Eu | 2.991 | 0 | 10.964 | 11.055 | 5.188×10-4 | -5.185×10-4 | 1.644×10-3 | -1.642×10-3 |
151Eu | 1.964 | 2 | 26.162 | 25.173 | 1.386×10-3 | -1.384×10-3 | 4.388×10-3 | -4.369×10-3 |
149Gd | 3.099 | 0 | 11.271 | 10.739 | 4.913×10-4 | -4.911×10-4 | 1.558×10-3 | -1.556×10-3 |
151Gd | 2.652 | 0 | 14.988 | 15.477 | 7.127×10-4 | -7.122×10-4 | 2.260×10-3 | -2.255×10-3 |
149Tb | 4.078 | 2 | 4.948 | 4.197 | 2.820×10-4 | -2.819×10-4 | 8.932×10-4 | -8.924×10-4 |
151Tb | 3.496 | 2 | 8.824 | 8.329 | 3.974×10-4 | -3.972×10-4 | 1.256×10-3 | -1.255×10-3 |
151Dy | 4.180 | 0 | 4.280 | 3.826 | 2.718×10-4 | -2.717×10-4 | 8.622×10-4 | -8.615×10-4 |
153Dy | 3.559 | 0 | 8.389 | 8.143 | 3.902×10-4 | -3.900×10-4 | 1.237×10-3 | -1.236×10-3 |
151Ho | 4.695 | 0 | 2.198 | 1.479 | 2.137×10-4 | -2.136×10-4 | 6.776×10-4 | -6.772×10-4 |
153Ho | 4.052 | 0 | 5.372 | 5.252 | 2.909×10-4 | -2.908×10-4 | 9.314×10-4 | -9.305×10-4 |
153Er | 4.802 | 0 | 1.843 | 1.467 | 2.075×10-4 | -2.074×10-4 | 6.604×10-4 | -6.600×10-4 |
155Er | 4.118 | 0 | 6.146 | 5.419 | 2.970×10-4 | -2.969×10-4 | 9.266×10-4 | -9.257×10-4 |
155Tm | 4.572 | 0 | 3.414 | 3.270 | 2.350×10-4 | -2.349×10-4 | 7.394×10-4 | -7.389×10-4 |
157Tm | 3.878 | 5 | 7.463 | 9.340 | 3.426×10-4 | -3.425×10-4 | 1.082×10-3 | -1.081×10-3 |
155Yb | 5.339 | 0 | 0.302 | -0.045 | 1.680×10-4 | -1.679×10-4 | 5.383×10-4 | -5.381×10-4 |
155Lu | 5.802 | 0 | -1.123 | -1.513 | 1.454×10-4 | -1.453×10-4 | 4.549×10-4 | -4.547×10-4 |
157Hf | 5.880 | 0 | -0.914 | -1.345 | 1.413×10-4 | -1.413×10-4 | 4.519×10-4 | -4.517×10-4 |
159Hf | 5.225 | 0 | 1.163 | 1.510 | 1.863×10-4 | -1.863×10-4 | 5.872×10-4 | -5.869×10-4 |
157Ta | 6.355 | 5 | -1.981 | -1.140 | 1.239×10-4 | -1.239×10-4 | 3.902×10-4 | -3.901×10-4 |
159Ta | 5.681 | 0 | 0.479 | -0.042 | 1.548×10-4 | -1.547×10-4 | 4.901×10-4 | -4.899×10-4 |
161W | 5.923 | 0 | -0.253 | -0.571 | 1.469×10-4 | -1.469×10-4 | 4.654×10-4 | -4.652×10-4 |
163W | 5.520 | 0 | 1.268 | 1.142 | 1.759×10-4 | -1.758×10-4 | 5.532×10-4 | -5.529×10-4 |
167W | 4.751 | 0 | 4.686 | 5.043 | 2.473×10-4 | -2.472×10-4 | 7.866×10-4 | -7.860×10-4 |
163Re | 6.012 | 0 | 0.082 | -0.460 | 1.469×10-4 | -1.468×10-4 | 4.626×10-4 | -4.624×10-4 |
165Re | 5.694 | 0 | 1.034 | 0.862 | 1.689×10-4 | -1.688×10-4 | 5.327×10-4 | -5.324×10-4 |
169Re | 5.014 | 5 | 5.184 | 5.677 | 2.286×10-4 | -2.285×10-4 | 7.354×10-4 | -7.349×10-4 |
161Os | 7.069 | 0 | -3.194 | -3.778 | 1.026×10-4 | -1.026×10-4 | 3.256×10-4 | -3.254×10-4 |
167Os | 5.980 | 0 | 0.213 | 0.122 | 1.555×10-4 | -1.555×10-4 | 4.965×10-4 | -4.963×10-4 |
169Os | 5.713 | 0 | 1.400 | 1.251 | 1.747×10-4 | -1.747×10-4 | 5.553×10-4 | -5.550×10-4 |
171Os | 5.371 | 0 | 2.663 | 2.828 | 2.058×10-4 | -2.058×10-4 | 6.485×10-4 | -6.481×10-4 |
173Os | 5.055 | 0 | 3.727 | 4.422 | 2.386×10-4 | -2.386×10-4 | 7.555×10-4 | -7.550×10-4 |
167Ir | 6.505 | 0 | -1.172 | -1.446 | 1.318×10-4 | -1.318×10-4 | 4.166×10-4 | -4.164×10-4 |
169Ir | 6.141 | 0 | -0.182 | -0.063 | 1.487×10-4 | -1.487×10-4 | 4.789×10-4 | -4.787×10-4 |
171Ir | 5.997 | 0 | 1.310 | 0.510 | 1.656×10-4 | -1.656×10-4 | 5.201×10-4 | -5.199×10-4 |
173Ir | 5.716 | 3 | 2.408 | 2.312 | 1.858×10-4 | -1.858×10-4 | 5.901×10-4 | -5.898×10-4 |
175Ir | 5.430 | 5 | 3.023 | 4.538 | 2.128×10-4 | -2.127×10-4 | 6.808×10-4 | -6.803×10-4 |
177Ir | 5.080 | 0 | 4.689 | 4.802 | 2.482×10-4 | -2.481×10-4 | 7.881×10-4 | -7.875×10-4 |
165Pt | 7.453 | 0 | -3.432 | -4.150 | 9.843×10-5 | -9.842×10-5 | 3.095×10-4 | -3.094×10-4 |
171Pt | 6.607 | 0 | -1.278 | -1.399 | 1.336×10-4 | -1.335×10-4 | 4.268×10-4 | -4.267×10-4 |
173Pt | 6.360 | 0 | -0.354 | -0.493 | 1.488×10-4 | -1.488×10-4 | 4.749×10-4 | -4.746×10-4 |
175Pt | 6.164 | 2 | 0.576 | 0.567 | 1.629×10-4 | -1.629×10-4 | 5.192×10-4 | -5.189×10-4 |
177Pt | 5.643 | 0 | 2.240 | 2.512 | 2.018×10-4 | -2.018×10-4 | 6.318×10-4 | -6.314×10-4 |
179Pt | 5.412 | 2 | 3.941 | 3.908 | 2.284×10-4 | -2.283×10-4 | 7.115×10-4 | -7.110×10-4 |
181Pt | 5.150 | 0 | 4.847 | 4.943 | 2.518×10-4 | -2.517×10-4 | 8.027×10-4 | -8.020×10-4 |
183Pt | 4.822 | 0 | 6.607 | 6.776 | 2.962×10-4 | -2.961×10-4 | 9.413×10-4 | -9.404×10-4 |
185Pt | 4.437 | 5 | 7.928 | 10.720 | 3.660×10-4 | -3.659×10-4 | 1.158×10-3 | -1.157×10-3 |
173Au | 6.836 | 0 | -1.529 | -1.780 | 1.295×10-4 | -1.295×10-4 | 4.072×10-4 | -4.070×10-4 |
175Au | 6.583 | 0 | -0.645 | -0.883 | 1.430×10-4 | -1.430×10-4 | 4.509×10-4 | -4.507×10-4 |
177Au | 6.298 | 0 | 0.568 | 0.191 | 1.585×10-4 | -1.585×10-4 | 5.058×10-4 | -5.055×10-4 |
179Au | 5.981 | 0 | 1.507 | 1.485 | 1.819×10-4 | -1.818×10-4 | 5.770×10-4 | -5.767×10-4 |
181Au | 5.751 | 0 | 2.697 | 2.489 | 2.041×10-4 | -2.041×10-4 | 6.470×10-4 | -6.466×10-4 |
183Au | 5.465 | 0 | 3.889 | 3.834 | 2.268×10-4 | -2.267×10-4 | 7.272×10-4 | -7.267×10-4 |
185Au | 5.180 | 0 | 4.982 | 5.295 | 2.661×10-4 | -2.660×10-4 | 8.307×10-4 | -8.300×10-4 |
175Hg | 7.072 | 0 | -1.991 | -2.169 | 1.227×10-4 | -1.227×10-4 | 3.903×10-4 | -3.902×10-4 |
177Hg | 6.740 | 2 | -0.932 | -0.726 | 1.383×10-4 | -1.383×10-4 | 4.426×10-4 | -4.424×10-4 |
179Hg | 6.350 | 0 | 0.144 | 0.445 | 1.613×10-4 | -1.613×10-4 | 5.086×10-4 | -5.084×10-4 |
181Hg | 6.284 | 2 | 1.122 | 0.969 | 1.732×10-4 | -1.732×10-4 | 5.435×10-4 | -5.432×10-4 |
183Hg | 6.039 | 0 | 1.904 | 1.692 | 1.874×10-4 | -1.873×10-4 | 5.962×10-4 | -5.959×10-4 |
185Hg | 5.773 | 0 | 2.906 | 2.858 | 2.125×10-4 | -2.125×10-4 | 6.696×10-4 | -6.692×10-4 |
177Tl | 7.067 | 0 | -1.609 | -1.722 | 1.257×10-4 | -1.257×10-4 | 3.968×10-4 | -3.967×10-4 |
179Tl | 6.709 | 0 | -0.139 | -0.457 | 1.425×10-4 | -1.425×10-4 | 4.489×10-4 | -4.487×10-4 |
181Tl | 6.322 | 0 | 1.525 | 1.030 | 1.622×10-4 | -1.622×10-4 | 5.178×10-4 | -5.175×10-4 |
179Pb | 7.596 | 2 | -2.569 | -2.752 | 1.112×10-4 | -1.112×10-4 | 3.524×10-4 | -3.522×10-4 |
181Pb | 7.240 | 2 | -1.409 | -1.621 | 1.255×10-4 | -1.255×10-4 | 3.982×10-4 | -3.981×10-4 |
183Pb | 6.928 | 1 | -0.272 | -0.755 | 1.398×10-4 | -1.398×10-4 | 4.449×10-4 | -4.447×10-4 |
185Pb | 6.695 | 2 | 1.265 | 0.277 | 1.547×10-4 | -1.547×10-4 | 4.888×10-4 | -4.886×10-4 |
187Pb | 6.393 | 2 | 2.203 | 1.441 | 1.722×10-4 | -1.722×10-4 | 5.506×10-4 | -5.503×10-4 |
189Pb | 5.915 | 2 | 3.966 | 3.491 | 2.031×10-4 | -2.030×10-4 | 6.521×10-4 | -6.517×10-4 |
191Pb | 5.402 | 0 | 4.190 | 5.703 | 2.545×10-4 | -2.545×10-4 | 8.010×10-4 | -8.003×10-4 |
187Bi | 7.779 | 5 | -1.432 | -1.844 | 1.193×10-4 | -1.193×10-4 | 3.821×10-4 | -3.820×10-4 |
189Bi | 7.268 | 5 | -0.162 | -0.218 | 1.380×10-4 | -1.380×10-4 | 4.411×10-4 | -4.409×10-4 |
191Bi | 6.780 | 0 | 1.385 | 0.080 | 1.601×10-4 | -1.601×10-4 | 5.081×10-4 | -5.078×10-4 |
193Bi | 6.307 | 0 | 3.258 | 1.941 | 1.873×10-4 | -1.873×10-4 | 5.971×10-4 | -5.967×10-4 |
195Bi | 5.832 | 0 | 5.784 | 4.045 | 2.247×10-4 | -2.247×10-4 | 7.159×10-4 | -7.153×10-4 |
209Bi | 3.137 | 5 | 26.802 | 25.826 | 9.556×10-4 | -9.547×10-4 | 3.024×10-3 | -3.015×10-3 |
211Bi | 6.750 | 5 | 2.109 | 1.044 | 2.030×10-4 | -2.030×10-4 | 6.435×10-4 | -6.431×10-4 |
213Bi | 5.988 | 5 | 5.115 | 4.204 | 2.631×10-4 | -2.631×10-4 | 8.307×10-4 | -8.300×10-4 |
187Po | 7.979 | 2 | -2.854 | -3.149 | 1.124×10-4 | -1.123×10-4 | 3.564×10-4 | -3.562×10-4 |
189Po | 7.694 | 2 | -2.456 | -2.304 | 1.266×10-4 | -1.266×10-4 | 3.926×10-4 | -3.924×10-4 |
191Po | 7.493 | 0 | -1.658 | -1.972 | 1.309×10-4 | -1.309×10-4 | 4.178×10-4 | -4.176×10-4 |
193Po | 7.094 | 0 | -0.399 | -0.634 | 1.157×10-4 | -1.157×10-4 | 4.401×10-4 | -4.399×10-4 |
195Po | 6.750 | 0 | 0.692 | 0.611 | 1.688×10-4 | -1.687×10-4 | 4.978×10-4 | -4.975×10-4 |
197Po | 6.411 | 0 | 2.079 | 1.952 | 1.903×10-4 | -1.903×10-4 | 6.043×10-4 | -6.039×10-4 |
199Po | 6.074 | 0 | 3.639 | 3.397 | 2.202×10-4 | -2.202×10-4 | 6.873×10-4 | -6.868×10-4 |
201Po | 5.799 | 0 | 4.917 | 4.662 | 2.435×10-4 | -2.434×10-4 | 7.693×10-4 | -7.687×10-4 |
203Po | 5.496 | 2 | 6.294 | 6.478 | 2.752×10-4 | -2.751×10-4 | 8.735×10-4 | -8.727×10-4 |
205Po | 5.325 | 0 | 7.193 | 7.101 | 3.008×10-4 | -3.008×10-4 | 9.524×10-4 | -9.515×10-4 |
207Po | 5.216 | 0 | 7.993 | 7.677 | 3.206×10-4 | -3.205×10-4 | 1.014×10-3 | -1.013×10-3 |
209Po | 4.979 | 0 | 9.594 | 9.068 | 3.580×10-4 | -3.579×10-4 | 1.138×10-3 | -1.137×10-3 |
211Po | 7.595 | 5 | -0.287 | -1.482 | 1.611×10-4 | -1.611×10-4 | 5.100×10-4 | -5.097×10-4 |
213Po | 8.536 | 0 | -5.431 | -5.597 | 1.301×10-4 | -1.301×10-4 | 4.061×10-4 | -4.059×10-4 |
215Po | 7.526 | 0 | -2.749 | -2.661 | 1.667×10-4 | -1.667×10-4 | 5.276×10-4 | -5.273×10-4 |
217Po | 6.662 | 0 | 0.196 | 0.409 | 2.161×10-4 | -2.161×10-4 | 6.823×10-4 | -6.818×10-4 |
219Po | 5.910 | 0 | 3.341 | 3.586 | 2.788×10-4 | -2.787×10-4 | 8.824×10-4 | -8.816×10-4 |
191At | 7.822 | 0 | -2.678 | -2.609 | 1.256×10-4 | -1.255×10-4 | 3.925×10-4 | -3.924×10-4 |
193At | 7.572 | 0 | -1.538 | -1.838 | 1.329×10-4 | -1.329×10-4 | 4.203×10-4 | -4.201×10-4 |
195At | 7.344 | 0 | -0.538 | -1.103 | 1.438×10-4 | -1.438×10-4 | 4.580×10-4 | -4.578×10-4 |
197At | 7.104 | 0 | -0.394 | -0.264 | 1.568×10-4 | -1.568×10-4 | 4.966×10-4 | -4.963×10-4 |
199At | 6.777 | 0 | 0.894 | 0.933 | 1.738×10-4 | -1.737×10-4 | 5.513×10-4 | -5.510×10-4 |
201At | 6.473 | 0 | 2.075 | 2.142 | 1.944×10-4 | -1.944×10-4 | 6.159×10-4 | -6.155×10-4 |
203At | 6.210 | 0 | 3.152 | 3.242 | 2.160×10-4 | -2.160×10-4 | 6.829×10-4 | -6.825×10-4 |
205At | 6.020 | 0 | 4.199 | 4.082 | 2.386×10-4 | -2.385×10-4 | 7.464×10-4 | -7.458×10-4 |
207At | 5.872 | 0 | 4.814 | 4.764 | 2.534×10-4 | -2.534×10-4 | 7.999×10-4 | -7.992×10-4 |
209At | 5.757 | 0 | 5.695 | 5.311 | 2.683×10-4 | -2.683×10-4 | 8.477×10-4 | -8.470×10-4 |
211At | 5.982 | 0 | 4.793 | 4.204 | 2.536×10-4 | -2.536×10-4 | 7.995×10-4 | -7.989×10-4 |
213At | 9.254 | 0 | -6.903 | -7.023 | 1.108×10-4 | -1.108×10-4 | 3.474×10-4 | -3.473×10-4 |
215At | 8.178 | 0 | -4.432 | -4.241 | 1.423×10-4 | -1.423×10-4 | 4.496×10-4 | -4.494×10-4 |
217At | 7.201 | 0 | -1.487 | -1.149 | 1.843×10-4 | -1.842×10-4 | 5.817×10-4 | -5.814×10-4 |
219At | 6.342 | 0 | 1.777 | 2.162 | 2.417×10-4 | -2.417×10-4 | 7.638×10-4 | -7.632×10-4 |
193Rn | 8.040 | 2 | -2.939 | -2.604 | 1.179×10-4 | -1.179×10-4 | 3.802×10-4 | -3.801×10-4 |
195Rn | 7.690 | 0 | -2.155 | -1.825 | 1.318×10-4 | -1.318×10-4 | 4.176×10-4 | -4.174×10-4 |
197Rn | 7.411 | 0 | -1.268 | -0.930 | 1.445×10-4 | -1.445×10-4 | 4.554×10-4 | -4.552×10-4 |
199Rn | 7.132 | 0 | -0.229 | 0.036 | 1.580×10-4 | -1.580×10-4 | 5.037×10-4 | -5.035×10-4 |
203Rn | 6.630 | 0 | 1.820 | 1.949 | 1.914×10-4 | -1.914×10-4 | 6.000×10-4 | -5.997×10-4 |
205Rn | 6.387 | 0 | 2.838 | 2.953 | 2.076×10-4 | -2.075×10-4 | 6.571×10-4 | -6.567×10-4 |
207Rn | 6.251 | 0 | 3.416 | 3.513 | 2.228×10-4 | -2.228×10-4 | 7.004×10-4 | -6.999×10-4 |
209Rn | 6.155 | 0 | 4.002 | 3.921 | 2.384×10-4 | -2.383×10-4 | 7.374×10-4 | -7.369×10-4 |
211Rn | 5.966 | 2 | 5.283 | 5.076 | 2.528×10-4 | -2.528×10-4 | 8.018×10-4 | -8.012×10-4 |
213Rn | 8.245 | 5 | -1.710 | -2.670 | 1.391×10-4 | -1.391×10-4 | 4.406×10-4 | -4.404×10-4 |
215Rn | 8.839 | 0 | -5.638 | -5.646 | 1.218×10-4 | -1.218×10-4 | 3.843×10-4 | -3.842×10-4 |
217Rn | 7.887 | 0 | -3.227 | -2.970 | 1.542×10-4 | -1.542×10-4 | 4.881×10-4 | -4.878×10-4 |
219Rn | 6.946 | 2 | 0.598 | 0.467 | 2.025×10-4 | -2.025×10-4 | 6.393×10-4 | -6.389×10-4 |
221Rn | 6.163 | 2 | 3.844 | 3.696 | 2.605×10-4 | -2.604×10-4 | 8.235×10-4 | -8.228×10-4 |
197Fr | 7.900 | 0 | -2.638 | -2.093 | 1.270×10-4 | -1.270×10-4 | 4.061×10-4 | -4.059×10-4 |
199Fr | 7.817 | 0 | -2.180 | -1.848 | 1.333×10-4 | -1.333×10-4 | 4.245×10-4 | -4.243×10-4 |
201Fr | 7.519 | 0 | -1.202 | -0.891 | 1.463×10-4 | -1.463×10-4 | 4.609×10-4 | -4.607×10-4 |
203Fr | 7.275 | 0 | -0.260 | -0.040 | 1.589×10-4 | -1.589×10-4 | 4.995×10-4 | -4.993×10-4 |
205Fr | 7.055 | 0 | 0.597 | 0.736 | 1.717×10-4 | -1.716×10-4 | 5.386×10-4 | -5.383×10-4 |
207Fr | 6.889 | 0 | 1.192 | 1.349 | 1.820×10-4 | -1.820×10-4 | 5.789×10-4 | -5.786×10-4 |
209Fr | 6.777 | 0 | 1.752 | 1.769 | 1.908×10-4 | -1.907×10-4 | 6.076×10-4 | -6.072×10-4 |
211Fr | 6.662 | 0 | 2.328 | 2.207 | 2.053×10-4 | -2.052×10-4 | 6.414×10-4 | -6.410×10-4 |
213Fr | 6.905 | 0 | 1.536 | 1.226 | 1.929×10-4 | -1.929×10-4 | 6.101×10-4 | -6.097×10-4 |
215Fr | 9.540 | 0 | -7.046 | -6.990 | 1.051×10-4 | -1.051×10-4 | 3.326×10-4 | -3.325×10-4 |
217Fr | 8.469 | 0 | -4.658 | -4.284 | 1.330×10-4 | -1.329×10-4 | 4.243×10-4 | -4.242×10-4 |
219Fr | 7.449 | 0 | -1.648 | -1.143 | 1.740×10-4 | -1.740×10-4 | 5.545×10-4 | -5.542×10-4 |
221Fr | 6.458 | 2 | 2.459 | 2.878 | 2.354×10-4 | -2.354×10-4 | 7.503×10-4 | -7.498×10-4 |
223Fr | 5.561 | 4 | 7.342 | 7.785 | 3.326×10-4 | -3.325×10-4 | 1.045×10-3 | -1.044×10-3 |
201Ra | 8.002 | 0 | -1.699 | -2.035 | 1.297×10-4 | -1.297×10-4 | 4.083×10-4 | -4.082×10-4 |
203Ra | 7.736 | 0 | -1.444 | -1.211 | 1.382×10-4 | -1.382×10-4 | 4.444×10-4 | -4.442×10-4 |
205Ra | 7.486 | 0 | -0.658 | -0.389 | 1.551×10-4 | -1.551×10-4 | 4.832×10-4 | -4.830×10-4 |
207Ra | 7.270 | 2 | 0.205 | 0.661 | 1.651×10-4 | -1.650×10-4 | 5.197×10-4 | -5.194×10-4 |
209Ra | 7.143 | 0 | 0.673 | 0.815 | 1.724×10-4 | -1.724×10-4 | 5.475×10-4 | -5.472×10-4 |
211Ra | 7.042 | 0 | 1.100 | 1.187 | 1.820×10-4 | -1.820×10-4 | 5.753×10-4 | -5.750×10-4 |
213Ra | 6.862 | 2 | 2.274 | 2.137 | 1.943×10-4 | -1.943×10-4 | 6.145×10-4 | -6.141×10-4 |
215Ra | 8.862 | 5 | -2.778 | -3.631 | 9.256×10-5 | -9.256×10-5 | 3.891×10-4 | -3.890×10-4 |
217Ra | 9.161 | 0 | -5.710 | -5.727 | 1.132×10-4 | -1.132×10-4 | 3.626×10-4 | -3.625×10-4 |
219Ra | 8.138 | 2 | -2.046 | -2.679 | 1.490×10-4 | -1.490×10-4 | 4.687×10-4 | -4.685×10-4 |
221Ra | 6.880 | 2 | 1.398 | 1.623 | 2.085×10-4 | -2.084×10-4 | 6.604×10-4 | -6.600×10-4 |
223Ra | 5.979 | 2 | 5.995 | 5.523 | 2.826×10-4 | -2.825×10-4 | 8.964×10-4 | -8.956×10-4 |
205Ac | 8.090 | 0 | -1.097 | -1.930 | 1.309×10-4 | -1.309×10-4 | 4.166×10-4 | -4.164×10-4 |
207Ac | 7.840 | 0 | -1.509 | -1.163 | 1.436×10-4 | -1.436×10-4 | 4.505×10-4 | -4.503×10-4 |
209Ac | 7.730 | 0 | -1.027 | -0.801 | 1.481×10-4 | -1.481×10-4 | 4.675×10-4 | -4.673×10-4 |
211Ac | 7.570 | 0 | -0.672 | -0.273 | 1.572×10-4 | -1.572×10-4 | 4.983×10-4 | -4.981×10-4 |
213Ac | 7.498 | 0 | -0.132 | -0.050 | 1.644×10-4 | -1.644×10-4 | 5.167×10-4 | -5.164×10-4 |
215Ac | 7.746 | 0 | -0.767 | -0.904 | 1.566×10-4 | -1.565×10-4 | 4.937×10-4 | -4.934×10-4 |
217Ac | 9.832 | 0 | -7.161 | -6.961 | 1.267×10-4 | -1.267×10-4 | 3.184×10-4 | -3.183×10-4 |
219Ac | 8.830 | 0 | -5.027 | -4.522 | 1.257×10-4 | -1.257×10-4 | 3.679×10-4 | -3.678×10-4 |
221Ac | 7.790 | 0 | -1.284 | -1.461 | 1.630×10-4 | -1.630×10-4 | 5.200×10-4 | -5.197×10-4 |
223Ac | 6.783 | 2 | 2.105 | 2.440 | 2.204×10-4 | -2.204×10-4 | 6.975×10-4 | -6.971×10-4 |
225Ac | 5.935 | 2 | 5.933 | 6.226 | 2.927×10-4 | -2.926×10-4 | 9.214×10-4 | -9.205×10-4 |
227Ac | 5.042 | 0 | 10.696 | 10.970 | 4.093×10-4 | -4.092×10-4 | 1.302×10-3 | -1.300×10-3 |
211Th | 7.940 | 0 | -1.319 | -1.079 | 1.425×10-4 | -1.425×10-4 | 4.544×10-4 | -4.542×10-4 |
213Th | 7.837 | 0 | -0.842 | -0.759 | 1.507×10-4 | -1.507×10-4 | 4.744×10-4 | -4.742×10-4 |
215Th | 7.665 | 2 | 0.130 | 0.073 | 1.584×10-4 | -1.584×10-4 | 5.044×10-4 | -5.042×10-4 |
217Th | 9.435 | 5 | -3.606 | -4.388 | 1.106×10-4 | -1.106×10-4 | 3.499×10-4 | -3.498×10-4 |
219Th | 9.510 | 0 | -5.990 | -5.866 | 1.088×10-4 | -1.088×10-4 | 3.434×10-4 | -3.433×10-4 |
221Th | 8.625 | 2 | -2.757 | -3.324 | 1.348×10-4 | -1.347×10-4 | 4.252×10-4 | -4.250×10-4 |
223Th | 7.567 | 2 | -0.222 | -0.045 | 1.753×10-4 | -1.753×10-4 | 5.552×10-4 | -5.549×10-4 |
225Th | 6.921 | 2 | 2.766 | 2.321 | 2.130×10-4 | -2.129×10-4 | 6.768×10-4 | -6.764×10-4 |
227Th | 6.147 | 2 | 6.208 | 5.677 | 2.763×10-4 | -2.763×10-4 | 8.751×10-4 | -8.743×10-4 |
229Th | 5.168 | 2 | 11.398 | 10.998 | 4.038×10-4 | -4.037×10-4 | 1.271×10-3 | -1.270×10-3 |
211Pa | 8.480 | 0 | -2.222 | -2.347 | 1.267×10-4 | -1.267×10-4 | 4.006×10-4 | -4.004×10-4 |
213Pa | 8.384 | 0 | -2.131 | -2.065 | 1.286×10-4 | -1.286×10-4 | 4.134×10-4 | -4.132×10-4 |
215Pa | 8.240 | 0 | -1.854 | -1.643 | 1.382×10-4 | -1.381×10-4 | 4.357×10-4 | -4.355×10-4 |
217Pa | 8.489 | 0 | -2.420 | -2.408 | 1.344×10-4 | -1.344×10-4 | 4.190×10-4 | -4.189×10-4 |
219Pa | 10.130 | 0 | -7.252 | -6.935 | 9.647×10-5 | -9.646×10-5 | 3.049×10-4 | -3.048×10-4 |
221Pa | 9.250 | 0 | -5.229 | -4.843 | 1.164×10-4 | -1.164×10-4 | 3.680×10-4 | -3.678×10-4 |
223Pa | 8.340 | 0 | -2.276 | -2.378 | 1.468×10-4 | -1.468×10-4 | 4.601×10-4 | -4.599×10-4 |
225Pa | 7.400 | 2 | 0.233 | 0.962 | 1.889×10-4 | -1.889×10-4 | 5.932×10-4 | -5.929×10-4 |
227Pa | 6.580 | 0 | 3.431 | 3.914 | 2.411×10-4 | -2.410×10-4 | 7.601×10-4 | -7.595×10-4 |
229Pa | 5.835 | 1 | 7.432 | 7.548 | 3.082×10-4 | -3.081×10-4 | 9.843×10-4 | -9.833×10-4 |
231Pa | 5.150 | 0 | 12.013 | 11.367 | 4.109×10-4 | -4.107×10-4 | 1.299×10-3 | -1.297×10-3 |
219U | 9.950 | 5 | -4.222 | -4.935 | 7.225×10-5 | -7.225×10-5 | 2.913×10-4 | -2.912×10-4 |
221U | 9.890 | 0 | -6.180 | -6.063 | 1.066×10-4 | -1.066×10-4 | 3.247×10-4 | -3.246×10-4 |
223U | 9.158 | 2 | -4.187 | -4.030 | 1.219×10-4 | -1.219×10-4 | 3.835×10-4 | -3.834×10-4 |
225U | 8.007 | 2 | -1.208 | -0.696 | 1.608×10-4 | -1.607×10-4 | 5.056×10-4 | -5.053×10-4 |
227U | 7.235 | 2 | 1.820 | 1.983 | 1.971×10-4 | -1.971×10-4 | 6.281×10-4 | -6.277×10-4 |
229U | 6.476 | 0 | 4.239 | 4.842 | 2.534×10-4 | -2.533×10-4 | 7.976×10-4 | -7.970×10-4 |
231U | 5.576 | 2 | 9.947 | 9.642 | 3.444×10-4 | -3.443×10-4 | 1.097×10-3 | -1.095×10-3 |
233U | 4.909 | 0 | 12.701 | 13.505 | 4.623×10-4 | -4.621×10-4 | 1.465×10-3 | -1.463×10-3 |
235U | 4.678 | 1 | 16.347 | 15.232 | 5.103×10-4 | -5.101×10-4 | 1.636×10-3 | -1.633×10-3 |
219Np | 9.210 | 0 | -3.244 | -3.651 | 1.129×10-4 | -1.129×10-4 | 3.606×10-4 | -3.604×10-4 |
223Np | 9.650 | 0 | -5.602 | -5.160 | 1.064×10-4 | -1.063×10-4 | 3.412×10-4 | -3.411×10-4 |
225Np | 8.820 | 0 | -2.187 | -3.006 | 1.329×10-4 | -1.328×10-4 | 4.176×10-4 | -4.174×10-4 |
227Np | 7.816 | 3 | -0.292 | 0.600 | 1.713×10-4 | -1.712×10-4 | 5.426×10-4 | -5.423×10-4 |
229Np | 7.020 | 1 | 2.547 | 3.092 | 2.127×10-4 | -2.126×10-4 | 6.760×10-4 | -6.756×10-4 |
231Np | 6.370 | 1 | 5.144 | 5.885 | 2.672×10-4 | -2.671×10-4 | 8.382×10-4 | -8.375×10-4 |
233Np | 5.630 | 0 | 8.492 | 9.556 | 3.451×10-4 | -3.449×10-4 | 1.095×10-3 | -1.093×10-3 |
235Np | 5.194 | 1 | 12.119 | 12.259 | 4.126×10-4 | -4.124×10-4 | 1.320×10-3 | -1.318×10-3 |
237Np | 4.957 | 1 | 13.830 | 13.809 | 4.684×10-4 | -4.682×10-4 | 1.471×10-3 | -1.469×10-3 |
229Pu | 7.600 | 2 | 2.258 | 1.501 | 1.819×10-4 | -1.819×10-4 | 5.788×10-4 | -5.784×10-4 |
231Pu | 6.839 | 0 | 3.582 | 4.195 | 2.273×10-4 | -2.273×10-4 | 7.233×10-4 | -7.228×10-4 |
233Pu | 6.420 | 2 | 6.001 | 6.277 | 2.655×10-4 | -2.654×10-4 | 8.449×10-4 | -8.442×10-4 |
235Pu | 5.951 | 0 | 7.723 | 8.325 | 3.143×10-4 | -3.142×10-4 | 1.001×10-3 | -9.998×10-4 |
237Pu | 5.748 | 1 | 10.968 | 9.484 | 3.477×10-4 | -3.476×10-4 | 1.094×10-3 | -1.093×10-3 |
239Pu | 5.245 | 0 | 11.881 | 12.371 | 4.235×10-4 | -4.233×10-4 | 1.337×10-3 | -1.335×10-3 |
241Pu | 5.140 | 2 | 13.265 | 13.300 | 4.450×10-4 | -4.448×10-4 | 1.418×10-3 | -1.416×10-3 |
229Am | 8.140 | 2 | 0.255 | 0.077 | 1.584×10-4 | -1.584×10-4 | 5.046×10-4 | -5.044×10-4 |
235Am | 6.576 | 1 | 5.184 | 5.850 | 2.620×10-4 | -2.619×10-4 | 8.214×10-4 | -8.207×10-4 |
239Am | 5.922 | 1 | 8.632 | 9.038 | 3.322×10-4 | -3.321×10-4 | 1.042×10-3 | -1.041×10-3 |
241Am | 5.638 | 1 | 10.135 | 10.600 | 3.708×10-4 | -3.707×10-4 | 1.173×10-3 | -1.171×10-3 |
243Am | 5.439 | 1 | 11.365 | 11.754 | 4.068×10-4 | -4.067×10-4 | 1.285×10-3 | -1.283×10-3 |
233Cm | 7.470 | 0 | 2.107 | 2.541 | 1.934×10-4 | -1.933×10-4 | 6.216×10-4 | -6.213×10-4 |
239Cm | 6.540 | 1 | 8.162 | 6.465 | 2.650×10-4 | -2.649×10-4 | 8.535×10-4 | -8.528×10-4 |
241Cm | 6.185 | 3 | 8.448 | 8.597 | 3.054×10-4 | -3.053×10-4 | 9.640×10-4 | -9.631×10-4 |
243Cm | 6.169 | 2 | 8.963 | 8.399 | 3.071×10-4 | -3.070×10-4 | 9.859×10-4 | -9.850×10-4 |
245Cm | 5.625 | 2 | 11.416 | 11.351 | 3.837×10-4 | -3.836×10-4 | 1.211×10-3 | -1.210×10-3 |
247Cm | 5.354 | 1 | 14.692 | 12.808 | 4.244×10-4 | -4.242×10-4 | 1.356×10-3 | -1.354×10-3 |
243Bk | 6.874 | 2 | 7.043 | 5.576 | 2.513×10-4 | -2.512×10-4 | 7.950×10-4 | -7.943×10-4 |
245Bk | 6.455 | 2 | 8.548 | 7.467 | 2.894×10-4 | -2.894×10-4 | 9.192×10-4 | -9.184×10-4 |
247Bk | 5.890 | 2 | 10.639 | 10.349 | 3.571×10-4 | -3.569×10-4 | 1.120×10-3 | -1.119×10-3 |
249Bk | 5.521 | 2 | 12.288 | 12.479 | 4.055×10-4 | -4.053×10-4 | 1.292×10-3 | -1.291×10-3 |
237Cf | 8.220 | 2 | 0.057 | 0.960 | 1.684×10-4 | -1.684×10-4 | 5.313×10-4 | -5.310×10-4 |
245Cf | 7.259 | 0 | 3.884 | 4.146 | 2.291×10-4 | -2.290×10-4 | 7.226×10-4 | -7.221×10-4 |
247Cf | 6.503 | 2 | 7.499 | 7.701 | 2.901×10-4 | -2.900×10-4 | 9.130×10-4 | -9.122×10-4 |
249Cf | 6.293 | 1 | 10.044 | 8.534 | 3.148×10-4 | -3.147×10-4 | 9.875×10-4 | -9.866×10-4 |
251Cf | 6.177 | 5 | 10.452 | 10.314 | 3.327×10-4 | -3.326×10-4 | 1.057×10-3 | -1.056×10-3 |
253Cf | 6.126 | 0 | 8.690 | 9.279 | 3.390×10-4 | -3.389×10-4 | 1.073×10-3 | -1.072×10-3 |
247Es | 7.464 | 3 | 3.591 | 4.264 | 2.202×10-4 | -2.202×10-4 | 6.945×10-4 | -6.941×10-4 |
251Es | 6.597 | 0 | 7.359 | 7.439 | 2.874×10-4 | -2.873×10-4 | 9.085×10-4 | -9.077×10-4 |
253Es | 6.739 | 0 | 6.248 | 6.759 | 2.825×10-4 | -2.824×10-4 | 8.896×10-4 | -8.888×10-4 |
255Es | 6.436 | 0 | 7.631 | 8.176 | 3.112×10-4 | -3.111×10-4 | 9.817×10-4 | -9.807×10-4 |
249Fm | 7.709 | 4 | 2.452 | 4.073 | 2.103×10-4 | -2.103×10-4 | 6.663×10-4 | -6.658×10-4 |
251Fm | 7.425 | 1 | 6.025 | 4.400 | 2.273×10-4 | -2.273×10-4 | 7.199×10-4 | -7.194×10-4 |
253Fm | 7.198 | 5 | 6.331 | 6.478 | 2.501×10-4 | -2.500×10-4 | 7.873×10-4 | -7.867×10-4 |
255Fm | 7.241 | 4 | 4.859 | 5.857 | 2.498×10-4 | -2.498×10-4 | 7.857×10-4 | -7.851×10-4 |
257Fm | 6.864 | 2 | 6.940 | 6.878 | 2.788×10-4 | -2.788×10-4 | 8.810×10-4 | -8.802×10-4 |
249Md | 8.441 | 2 | 1.530 | 1.329 | 1.755×10-4 | -1.755×10-4 | 5.528×10-4 | -5.525×10-4 |
251Md | 7.963 | 1 | 3.398 | 2.796 | 1.984×10-4 | -1.983×10-4 | 6.276×10-4 | -6.273×10-4 |
255Md | 7.906 | 2 | 4.358 | 3.122 | 2.084×10-4 | -2.084×10-4 | 6.563×10-4 | -6.559×10-4 |
257Md | 7.557 | 1 | 5.114 | 4.255 | 2.279×10-4 | -2.279×10-4 | 7.224×10-4 | -7.219×10-4 |
253No | 8.415 | 1 | 2.231 | 1.618 | 1.779×10-4 | -1.779×10-4 | 5.680×10-4 | -5.677×10-4 |
255No | 8.428 | 5 | 2.840 | 2.695 | 1.875×10-4 | -1.875×10-4 | 5.845×10-4 | -5.842×10-4 |
257No | 8.477 | 2 | 1.456 | 1.529 | 1.821×10-4 | -1.821×10-4 | 5.771×10-4 | -5.768×10-4 |
259No | 7.854 | 2 | 3.664 | 3.701 | 2.146×10-4 | -2.146×10-4 | 6.780×10-4 | -6.775×10-4 |
253Lr | 8.918 | 0 | -0.154 | 0.324 | 1.604×10-4 | -1.604×10-4 | 5.040×10-4 | -5.037×10-4 |
255Lr | 8.556 | 0 | 1.494 | 1.464 | 1.768×10-4 | -1.767×10-4 | 5.553×10-4 | -5.550×10-4 |
259Lr | 8.580 | 0 | 0.899 | 1.333 | 1.789×10-4 | -1.789×10-4 | 5.680×10-4 | -5.677×10-4 |
257Rf | 9.083 | 5 | 0.748 | 1.368 | 1.648×10-4 | -1.647×10-4 | 5.105×10-4 | -5.102×10-4 |
261Rf | 8.650 | 0 | 1.057 | 1.483 | 1.798×10-4 | -1.798×10-4 | 5.654×10-4 | -5.651×10-4 |
259Db | 9.620 | 5 | -0.292 | 0.147 | 1.463×10-4 | -1.463×10-4 | 4.633×10-4 | -4.631×10-4 |
261Sg | 9.714 | 2 | -0.729 | -0.713 | 1.451×10-4 | -1.451×10-4 | 4.550×10-4 | -4.547×10-4 |
261Bh | 10.500 | 3 | -1.893 | -2.201 | 1.239×10-4 | -1.239×10-4 | 3.925×10-4 | -3.924×10-4 |
265Hs | 10.470 | 0 | -2.708 | -2.268 | 1.253×10-4 | -1.253×10-4 | 4.030×10-4 | -4.028×10-4 |
To provide a more intuitive comparison of the theoretical half-life of α decay with experimental data, Fig. 1(a) meticulously displays both the experimental data (
-202504-ok/1001-8042-36-04-014/alternativeImage/1001-8042-36-04-014-F001.jpg)
Based on Eq. (8) and (30), the laser electric field affects the nucleus' α decay penetration probability. This impact is owing to the alteration of the total potential barrier height and the energy of the α particle, which ultimately affects the α-decay half-life. In this study, we define the effect of the laser electric field on the nucleus α-decay penetration probability as the rate of change in the penetration probability δP, which is as follows:
To better show the impact of the laser electric field on the α decay of odd-A nuclei, we illustrated δP from Table 1 in Fig. 2. It is worth noting that the absolute values of the rate of change of the half-life and penetration probability were nearly identical for the laser intensities of I=1023 W/cm2 and I=1024 W/cm2. Therefore, our subsequent analysis concentrates solely on the rate of change in the penetration probability. In this study, we classified the odd-A nuclei into two categories based on the parity of the protons they contain. The first category is for parent nuclei with an odd number of protons, also known as ‘odd-even nuclei’. The second category is for parent nuclei with an even number of protons, known as ‘even-odd nuclei’. In this context, we discuss the difference in the rate of change of the penetration probability of these two types of nuclei when exposed to the same laser field. Figure 2 displays the rate of change of the penetration probability for different parent nuclei under the laser intensities of I=1023 W/cm2 and I=1024 W/cm2. The superscript of δP in the figure denotes the laser intensity, and the subscripts ‘eo’ and ‘oe’ of δP indicate the parent nuclei with even and odd numbers of protons, respectively.
-202504-ok/1001-8042-36-04-014/alternativeImage/1001-8042-36-04-014-F002.jpg)
Figure 2 illustrates that for nuclei with a smaller proton number, the rate of change of penetration probability of the even-odd nuclei is lower than that of the odd-even nuclei. This conclusion can also be drawn from Table 1, where for parent nuclei with
-202504-ok/1001-8042-36-04-014/alternativeImage/1001-8042-36-04-014-F003.jpg)
The α decay energy and half-life of odd-A nuclei are subject to odd-even staggering shell effects [67]. These phenomena are primarily attributed to the effect of pairwise correlations and the blocking of specific orbits by unpaired nuclei [76]. We are intrigued by the possibility that the shell effect and the odd-even staggering, which is observed in the energy and half-life of odd-A nuclei, may also be reflected in the rate of change of the penetration probability in extreme laser-field environments. Figures 4 and 5 depict the influence of the shell effect on δP of parent nuclei for Z values in the ranges of 80–84 and 85–90, respectively, at a laser intensity of I=1023 W/cm2. The various colored circles represent different parent nuclei. These figures indicate a similar trend in δP of the different parent nuclei near the neutron shell layer at 126. For parent nuclei with a neutron number of less than 126, δP increases as the neutron number increases, and then exhibits a sharp downward trend near N=126. In addition, for parent nuclei with neutron numbers greater than 126, δP continued to increase as the neutron number increased. Such nuclear shell-structure effects, reflected in the rate of change of the penetration probability, are caused by a mutation in the α decay energy near N=126. This implies that in future experiments, it is necessary to use parent nuclei that are far away from the shell layer to obtain a more significant rate of change in the half-life.
-202504-ok/1001-8042-36-04-014/alternativeImage/1001-8042-36-04-014-F004.jpg)
-202504-ok/1001-8042-36-04-014/alternativeImage/1001-8042-36-04-014-F005.jpg)
We consider the possible nuclear structure effect on clustering to explain the relationship between the shell and α decay energy. Near N = 126, the shell clustering effect significantly affects the decay energy [69]. The formation probability of α particles, which is closely related to the shell clustering effect and is extracted from the experimental half-lives, shows a distinct trend near N = 126 [70, 71]. In nuclei with neutron numbers equal to or just below N = 126, such as Po, the hole character of the neutron states leads to suppression of the α formation amplitude compared to nuclei such as Po [70]. This is because in the neutron–particle case (Po), high-lying configurations are more accessible, enhancing the neutron pairing correlation and eventually the two-neutron and α clustering. In contrast, in the neutron hole case, the availability of such configurations is limited, resulting in weaker clustering and a lower α formation amplitude. As the BCS theory describes, the pairing correlation is an essential factor related to the shell clustering effect. The isovector pairing correlation enhances the calculated α-decay width and governs the formation of α particles on the nuclear surface. The pairing gap, obtained from the experimental binding energies and related to the pairing correlation, showed a similar trend as the α-particle formation probability near N = 126 [4, 72-75]. This indicates that the pairing correlation and the resulting shell-clustering effect influence the decay energy by affecting the α-particle formation probability.
Figures 6 and 7 show the odd-even staggering of the rate of change of penetration probability of parent nuclei Ra and Th in the case of I=1023 W/cm2. The theoretical values of δP for the even-even nuclei used for plotting were obtained from Ref.[39]. These figures show that both parent nuclei Ra and Th exhibited odd-even staggering in the nucleus region away from the magic shell. To demonstrate this phenomenon more clearly, δP theoretical values of the parts with N < 126 were locally enlarged. The red circles in the magnified part represent odd-A nuclei, whereas the black circles indicate even-even nuclei. The magnified image shows an apparent parity staggering, indicating that the extent of the impact of the laser on the half-life of the nucleus is also affected by pairwise correlations and the blocking of specific orbitals by unpaired nuclei. This odd-even staggering effect is also reflected in the α-decay energy [76, 77]. Because the rate of change in the penetration probability is inversely proportional to the α-decay energy, the odd-even staggering effect related to the rate of change in the penetration probability tends to be opposite to the odd-even staggering effect linked to the α-decay energy.
-202504-ok/1001-8042-36-04-014/alternativeImage/1001-8042-36-04-014-F006.jpg)
-202504-ok/1001-8042-36-04-014/alternativeImage/1001-8042-36-04-014-F007.jpg)
Summary
We examined the effect of intense laser fields on the α-decay half-life of deformed ground-state odd-A nuclei. Our research indicated that a laser field can marginally modify the α-decay penetration probability in most nuclei, with Europium-151 (151Eu) showing the most pronounced susceptibility to laser-induced alterations. Moreover, the variance in the penetration probability rate of change between even-odd and odd-even nuclei was investigated. Furthermore, the rate of change in the penetration probability of odd-A nuclei was analyzed in relation to the number of neutrons in the parent nucleus. The findings reveal that the effect of the laser field on the nucleus penetration probability is significantly influenced by both the shell effect and the odd-even staggering phenomenon.
Physics of a Rare Isotope Accelerator
. Annu. Rev. Nucl. Part. S. 56, 53 (2006). https://doi.org/10.1146/annurev.nucl.55.090704.151604The discovery of the heaviest elements
. Rev. Mod. Phys. 72, 733 (2000). https://doi.org/10.1103/RevModPhys.72.733Radioactive decays at limits of nuclear stability
. Rev. Mod. Phys. 84, 567 (2012). https://doi.org/10.1103/RevModPhys.84.567Signatures of the Z=82 Shell Closure in α-Decay Process
. Phys. Rev. Lett. 110,α decay of the very neutron-deficient isotopes 197-199Fr
. Phys. Rev. C 87,α-decay properties of the new isotope 216U
. Phys. Rev. C 91,Alpha decay of the new isotope 215U
. Euro. Phys. J. A 51, 88 (2015). https://doi.org/10.1140/epja/i2015-15088-9Blurring the Boundaries: Decays of Multiparticle Isomers at the Proton Drip Line
. Phys. Rev. Lett. 112,α-particle preformation factors in heavy and superheavy nuclei
. Chin. Phys. C 48,Systematic study of cluster radioactivity within the generalized liquid drop model
. Chin. Phys. C 48,Correlation between α-particle preformation factor and α decay energy
. Phys. Lett. B 816,Improved density-dependent cluster model in α-decay calculations within anisotropic deformation-dependent surface diffuseness
. Phys. Rev. C 105,Zur quantentheorie des atomkernes
. Z. Phys. 51, 204 (1928). https://doi.org/10.1007/BF01343196Wave mechanics and radioactive disintegration
. Nature. 122, 439 (1928). https://doi.org/10.1038/122439a0Novel Manifestation of α-Clustering Structures: New “α+208Pb” States in 212Po Revealed by Their Enhanced E1 Decays
. Phys. Rev. Lett. 104,Alpha Cluster Condensation in 12C and 16O
. Phys. Rev. Lett. 87,Evidence for α clustering in heavy and superheavy nuclei
. Phys. Rev. C 69,α-decay hindrance factors: A probe of mean-field wave functions
. Phys. Rev. C 73,Properties of Z=114 super-heavy nuclei
. Nucl. Sci. Tech. 32, 55 (2021). https://doi.org/10.1007/s41365-021-00899-7Investigation of decay modes of superheavy nuclei
. Nucl. Sci. Tech. 32, 130 (2021). https://doi.org/10.1007/s41365-021-00967-yA Shorter 146Sm Half-Life Measured and Implications for 146Sm-142Nd Chronology in the Solar System
. Science 335, 1614 (2012). https://doi.org/10.1126/science.1215510Realization of laser intensity over 1023 W/cm2
. Optica 8, 630 (2021). https://doi.org/10.1364/OPTICA.420520Laser-assisted proton radioactivity of spherical and deformed nuclei
. J. Phys. G: Nucl. Part. Phys. 46,Current status and highlights of the ELI-NP research program
. Matter Radiat. Extrem. 5,339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility
. Opt. Lett. 43, 5681 (2018). https://doi.org/10.1364/OL.43.005681High-contrast front end based on cascaded XPWG and femtosecond OPA for 10-PW-level Ti:sapphire laser
. Opt. Express 26, 2625 (2018). https://doi.org/10.1364/OE.26.002625Effective extraction of photoneutron cross-section distribution using gamma activation and reaction yield ratio method
. Nucl. Sci. Tech. 34, 170 (2023). https://doi.org/10.1007/s41365-023-01330-zSpatial and spectral measurement of laser-driven protons through radioactivation
. Nucl. Sci. Tech. 34, 183 (2023). https://doi.org/10.1007/s41365-023-01324-xBright X/γ-ray emission and lepton pair production by strong laser fields: a review
. Rev. Mod. Plasma Phys. 8, 24 (2024). https://doi.org/10.1007/s41614-024-00158-3Femtosecond Pumping of Nuclear Isomeric States by the Coulomb Collision of Ions with Quivering Electrons
. Phys. Rev. Lett. 128,Resonant X-ray excitation of the nuclear clock isomer 45Sc
. Nature 622, 471 (2023). https://doi.org/10.1038/s41586-023-06491-wSubstantially enhanced deuteron-triton fusion probabilities in intense low-frequency laser fields
. Phys. Rev. C 102,Geiger-Nuttall Law for Nuclei in Strong Electromagnetic Fields
. Phys. Rev. Lett. 119,Three dimensional α-tunneling in intense laser fields
. J. Phys. G: Nucl. Part. Phys. 45,Charged particle emissions in high-frequency alternative electric fields
. Nucl. Phys. A 976, 23 (2018). https://doi.org/10.1016/j.nuclphysa.2018.05.004α decay in intense laser fields: Calculations using realistic nuclear potentials
. Phys. Rev. C 99,Can Extreme Electromagnetic Fields Accelerate the α Decay of Nuclei
? Phys. Rev. Lett. 124,α Decay in extreme laser fields within a deformed Gamow-like model
. Nucl. Sci. Tech. 35, 27 (2024). https://doi.org/10.1007/s41365-024-01371-yDeterminants in laser-assisted deformed α decay
. Phys. Lett. B 848,Coupled-channels study of fine structure in the α decay of well deformed nuclei
. Phys. Rev. C 83,Decay width and the shift of a quasistationary state
. Phys. Rev. Lett. 59, 262 (1987). https://doi.org/10.1103/PhysRevLett.59.262Effect of nuclear deformation on α-decay half-lives
. Phys. Rev. C 85,Penetration factor in deformed potentials: Application to α decay with deformed nuclei
. Phys. Rev. C 86,Systematic research on α-decay rates of spherical and deformed nuclei
. Ann. Phys. 358, 108 (2015). https://doi.org/10.1016/j.aop.2015.03.001Calculations of α-decay half-lives for heavy and superheavy nuclei
. Phys. Rev. C 83,α-particle decay through a deformed barrier
. Nucl. Phys. A 611, 332 (1996). https://doi.org/10.1016/S0375-9474(96)00404-6New deformed model of α-decay half-lives with a microscopic potential
. Phys. Rev. C 73,αdecay in ultraintense laser fields
, J. Phys. G 40,Coulomb interaction between spherical and deformed nuclei
. Phys. Rev. C 61,On the Coulomb interaction between spherical and deformed nuclei
. Phys. Lett. B 563, 53 (2003). https://doi.org/10.1016/S0370-2693(03)00600-2Coulomb Potentials between Spherical and Deformed Nuclei
. Chin. Phys. Lett. 25, 1247 (2008). https://doi.org/10.1088/0256-307x/25/4/023Asymptotics of radial wave equations
. J. Math. Phys. 36, 5431 (1995). https://doi.org/10.1063/1.531270New approach for α-decay calculations of deformed nuclei
. Phys. Rev. C 81,A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions
. Comput. Phys. Commun. 123, 143-152 (1999). https://doi.org/10.1016/S0010-4655(99)00243-XFavored α-decays of medium mass nuclei in density-dependent cluster model
. Nucl. Phys. A 760, 303 (2005). https://doi.org/10.1016/j.nuclphysa.2005.06.011Birefringence-Managed Normal-Dispersion Fiber Laser Delivering Energy-Tunable Chirp-Free Solitons
. Ultrafast Science 2022α-decay half-lives and Qα values of superheavy nuclei
. Phys. Rev. C 81,α decay of nuclei in extreme cases
. Phys. Rev. C 69,Coulomb Focusing on Intense Field Atomic Processes
. Phys. Rev. A 54,Interpretation of momentum distribution of recoil ions from laser-induced nonsequential double ionization by semiclassical rescattering model
. Phys. Rev. A 63, 011404(R) (2000). https://doi.org/10.1103/PhysRevA.63.011404Nuclear fission in intense laser fields
. Phys. Rev. C 102,Nuclear ground-state masses and deformations: FRDM(2012)
. Atom. Data Nucl. Data 109, 1 (2016). https://doi.org/10.1016/j.adt.2015.10.002The AME 2020 atomic mass evaluation (I). Evaluation of the input data and adjustment procedures
. Chin. Phys. C 45,The AME 2020 atomic mass evaluation (II). Tables, graphs, and References
. Chin. Phys. C 45,The NUBASE2020 evaluation of nuclear physics properties
. Chin. Phys. C 45,New look atαdecay of heavy nuclei
. Phys. Rev. Lett. 65, 2975 (1990). https://doi.org/10.1103/PhysRevLett.65.2975Systematic study of α decay for odd-A nuclei within a two-potential approach
. Phys. Rev. C 95,Laser-assisted deformed α decay of the ground state even-even nuclei
. Preprint arXiv:2307.02095 (2023). https://doi.org/10.48550/arXiv.2307.02095Recent developments in radioactive charged-particle emissions and related phenomena
. Prog. Part. Nucl. Phys. 105, 214 (2019). https://doi.org/10.1016/j.ppnp.2018.11.003Abrupt changes in α-decay systematics as a manifestation of collective nuclear modes
. Phys. Rev. C 81,Nuclear clustering and generalization of the Geiger–Nuttall law 100 years after its formulation
. J. Phys.: Conf. Ser. 321,Empirical pairing gaps, shell effects, and di-neutron spatial correlation in neutron-rich nuclei
. Nucl. Phys. A 940, 210 (2015). https://doi.org/10.1016/j.nuclphysa.2015.04.010Odd-Even Staggering of Nuclear Masses: Pairing or Shape Effect
? Phys. Rev. Lett. 81, 3599 (1998). https://doi.org/10.1103/PhysRevLett.81.3599Density dependence of the pairing interaction and pairing correlation in unstable nuclei
. Phys. Rev. C 91,Double binding energy differences: Mean-field or pairing effect
? Phys. Rev. C 717, 436 (2012). https://doi.org/10.1016/j.physletb.2012.10.011New isotope 207Th and odd-even staggering in α-decay energies for nuclei with Z>82 and N<126
. Phys. Rev. C 105,Examining the impact of α-decay energies on the odd-even staggering in half-lives: α-decay spectroscopy of 207-209Ac
. Phys. Rev. C 106,The authors declare that they have no competing interests.