Introduction
Quantum chromodynamics (QCD) is the fundamental theory of strong interactions that governs the strong interactions between quarks and gluons and serves as the cornerstone for understanding QCD matter. One of the major goals of ultra-relativistic nuclear collisions is to explore the properties of the QCD phase diagram [1], which shows the possible phases of QCD matter under different temperatures and baryon density conditions. According to lattice QCD calculations, a deconfinement transition from hadronic matter to a new state of matter called quark-gluon plasma (QGP) has been predicted at high temperatures and low baryon densities [2]. QGP is a state in which quarks and gluons are no longer confined inside hadrons but can move freely in a hot and dense medium. The existence of QGP has been confirmed by various experimental signatures observed in heavy-ion collisions at ultra-relativistic energies, such as the suppression of high transverse momentum (pT) hadrons owing to jet quenching [3, 4] and the large elliptic flow (v2) for hadrons owing to collective expansion [5-10].
After the discovery of strongly coupled QGP, efforts have been made to vary the collision energy and explore the phase structure of hot and dense QCD matter, which can be represented by the
One of the remarkable findings of previous studies on LHC energy was that the chemical freeze-out temperature Tch=156.5±1.5 MeV obtained from the thermal fit to the hadron and light nuclei yields [14] was consistent with the pseudo-critical temperature Tc = 154±9 MeV obtained from lattice QCD calculations [16] within a certain uncertainty. This suggests that chemical freeze-out occurred close to the phase boundary between the QGP and hadronic matter. The data used for the thermal fit were from ALICE Collaboration, which measured not only hadrons but also light nuclei, such as
In relativistic heavy-ion collisions, the detailed mechanisms underlying the production of light nuclei are not fully understood [19-29]. A widely discussed theory suggests that light nuclei are formed by the coalescence of nucleons during the final stages of collisions [30, 31]. This scenario clearly implies that the production of light nuclei occurs later than that of other hadrons and, consequently, at a lower temperature than that at which other hadrons are formed. Additionally, the thermal model offers an alternative perspective [14, 32, 33] in which protons, neutrons, and light nuclei are considered to reach a state of chemical equilibrium. In this scenario, light nuclei and nucleons are presumed to be produced concurrently, suggesting that their freeze-out temperatures are identical or similar to those of light-flavor hadrons. One particular study highlighted in Ref. [21] demonstrated that the yield of (anti-)deuterons remained relatively stable throughout the system's evolution, given that it was thermally initialized at the LHC energy. The (anti-)deuteron can be destroyed and created through the reaction
To study the effects of light nuclei on Tch, we utilized the statistical thermal model Thermal-FIST to analyze the yields of hadrons [12], (anti-)deuterons [20], and tritons [34] at RHIC energies. We compared the extracted freeze-out parameters across various particle yield sets and discussed the underlying physics of the production of strange, light-flavor, and light nuclei. In Sect. 2, we provide a brief introduction to the employed Statistical Thermal Model and selected particle sets. Subsequently, in Sect. 3, we present and discuss the results. Finally, Sect. 4 summarizes our study and findings.
Model and Particle Sets
The chemical properties of bulk particle production can be treated within the framework of thermal statistical models using the Thermal-FIST package [35]. This package is designed for convenient general-purpose physics analysis and is well-suited for the family of hadron resonance gas (HRG) models. Notable features of this package include the treatment of fluctuations and correlations of conserved charges, the effects of probabilistic decay, chemical non-equilibrium, and the inclusion of van der Waals hadronic interactions. However, in our study, we opted for an ideal non-interacting gas of hadrons and resonances within a Grand Canonical Ensemble (GCE) for simplicity and focus on the fundamental aspects of particle production. In GCE, all conserved charges, such as the baryonic number B, electric charge Q, strangeness S, and charm C, are conserved on average. For the chemical equilibrium case, these average values are regulated by their corresponding chemical potentials, μB, μS, μQ, and μC. The chemical potential μi of hadron species i is determined as
The hadron yield of π±, K±,
Particle Set | Particle list |
---|---|
I | π±, K±, p( |
II | π±, K±, p( |
III | d( |
Results
The detailed fitting outcomes for each energy, encompassing V and
Centrality | Tch (MeV) | μB (MeV) | γs | V(fm3) | |
---|---|---|---|---|---|
0-10% | 163.5±3.8 | 23.3±9.2 | 1.09±0.06 | 1389±256 | 11.2/6 |
10-20% | 161.3±3.4 | 22.0±8.0 | 1.03±0.05 | 1028±172 | 13.0/6 |
20-40% | 163.3±3.2 | 21.3±6.2 | 1.02±0.04 | 542±85 | 17.0/6 |
40-80% | 162.7±3.3 | 17.3±7.7 | 0.92±0.04 | 164±5 | 14.7/6 |
0-10% | 152.0±1.1 | 18.1±3.1 | 1.23±0.05 | 2436±217 | 39.7/9 |
10-20% | 154.2±1.1 | 18.0±3.0 | 1.10±0.03 | 1441±129 | 33.9/9 |
20-40% | 154.9±1.0 | 16.3±2.8 | 1.12±0.02 | 800±65 | 40.9/9 |
40-80% | 153.5±1.1 | 15.3±2.9 | 1.01±0.03 | 247±21 | 34.9/9 |
0-10% | 137.6±3.4 | 26.1±3.2 | 1 | 11210±4410 | \ |
10-20% | 139.6±3.9 | 25.1±3.2 | 1 | 6650±2904 | \ |
20-40% | 141.6±3.3 | 23.3±3.2 | 1 | 3214±1158 | \ |
40-80% | 142.3±3.8 | 20.4±3.2 | 1 | 771±314 | \ |
0-10% | 159.3±3.1 | 66.2±10.4 | 0.99±0.05 | 1220±187 | 16.2/6 |
10-20% | 158.5±2.7 | 64.3±8.8 | 1.00±0.05 | 842±120 | 16.4/6 |
20-40% | 158.8±2.7 | 58.6±8.5 | 0.99±0.05 | 484±68 | 14.7/6 |
40-80% | 157.5±2.6 | 52.1±7.7 | 0.89±0.05 | 143±21 | 17.6/6 |
0-10% | 152.8±1.1 | 63.1±3.1 | 1.02±0.05 | 1669±151 | 34.0/9 |
10-20% | 154.2±1.1 | 59.9±3.0 | 1.01±0.04 | 1057±96 | 30.9/9 |
20-40% | 155.6±1.1 | 57.1±3.0 | 0.99±0.04 | 572±51 | 23.1/9 |
40-80% | 155.4±1.4 | 53.8±3.2 | 0.90±0.04 | 158±17 | 19.6/9 |
0-10% | 140.6±3.2 | 66.9±3.0 | 1 | 6141±2233 | \ |
10-20% | 142.8±3.1 | 63.5±3.0 | 1 | 3514±1218 | \ |
20-40% | 146.5±3.3 | 60.3±3.1 | 1 | 1449±509 | \ |
40-80% | 149.4±6.0 | 53.6±3.6 | 1 | 272±157 | \ |
0-10% | 157.2±3.1 | 104.0±9.3 | 1.12±0.07 | 954±168 | 6.5/6 |
10-20% | 158.4±3.0 | 101.8±8.4 | 1.10±0.06 | 635±106 | 6.8/6 |
20-40% | 160.4±3.1 | 94.6±7.7 | 1.02±0.05 | 346±57 | 6.2/6 |
40-80% | 159.5±3.0 | 77.6±7.5 | 0.86±0.04 | 105±17 | 5.4/6 |
0-10% | 154.6±1.4 | 99.3±3.1 | 1.09±0.06 | 1163±136 | 20.1/9 |
10-20% | 155.6±1.3 | 95.2±3.0 | 1.08±0.05 | 776±84 | 21.5/9 |
20-40% | 156.1±1.2 | 87.3±2.8 | 1.03±0.03 | 448±44 | 22.6/9 |
40-80% | 154.2±1.1 | 74.3±2.6 | 0.89±0.03 | 139±13 | 19.1/9 |
0-10% | 142.6±3.3 | 99.6±3.2 | 1 | 4179±1524 | \ |
10-20% | 143.8±3.1 | 96.0±3.1 | 1 | 6650±2904 | \ |
20-40% | 145.0±2.7 | 89.9±2.9 | 1 | 1448±431 | \ |
40-80% | 145.5±2.5 | 78.2±2.8 | 1 | 350±96 | \ |
0-10% | 158.1±2.7 | 149.2±7.5 | 1.16±0.05 | 812±128 | 8.5/6 |
10-20% | 158.6±2.6 | 142.6±7.0 | 1.11±0.05 | 573±91 | 8.2/6 |
20-40% | 161.3±3.0 | 135.1±7.0 | 1.01±0.04 | 303±51 | 9.7/6 |
40-80% | 163.1±3.0 | 113.6±6.7 | 0.82±0.03 | 83±14 | 7.3/6 |
0-10% | 154.3±1.1 | 140.1±3.0 | 1.17±0.04 | 1030±94 | 23.5/9 |
10-20% | 154.6±1.1 | 134.3±3.0 | 1.12±0.03 | 733±66 | 25.6/9 |
20-40% | 156.5±1.1 | 126.0±2.7 | 1.03±0.03 | 402±35 | 22.7/9 |
40-80% | 155.2±1.0 | 103.9±2.7 | 0.88±0.02 | 123±10 | 26.0/9 |
0-10% | 144.0±2.8 | 138.0±4.0 | 1 | 3151±955 | \ |
10-20% | 142.7±2.9 | 132.5±4.1 | 1 | 2656±857 | \ |
20-40% | 146.9±2.9 | 125.9±4.0 | 1 | 1067±321 | \ |
-80% | 145.9±2.7 | 108.6±3.9 | 1 | 303±89 | \ |
Centrality | Tch(MeV) | μB (MeV) | γs | V (fm3) | |
---|---|---|---|---|---|
0-10% | 156.0±2.7 | 194.4±8.5 | 1.15±0.05 | 801±131 | 7.7/6 |
10-20% | 158.4±2.9 | 190.7±8.8 | 1.07±0.04 | 513±88 | 7.2/6 |
20-40% | 159.6±2.8 | 177.6±8.2 | 0.99±0.04 | 542±85 | 6.2/6 |
40-80% | 160.5±3.2 | 148.9±8.5 | 0.78±0.03 | 84.4±14.8 | 6.3/6 |
0-10% | 152.5±1.1 | 185.4±3.3 | 1.16±0.04 | 999±91 | 18.9/9 |
10-20% | 153.1±1.1 | 178.6±3.3 | 1.10±0.04 | 698±65 | 23.6/9 |
20-40% | 155.2±1.1 | 167.9±3.2 | 1.01±0.03 | 378±33 | 19.2/9 |
40-80% | 155.0±1.2 | 141.7±3.2 | 0.82±0.03 | 111±10 | 16.6/9 |
0-10% | 143.3±2.9 | 182.1±5.5 | 1 | 2693±832 | \ |
10-20% | 141.3±3.1 | 177.0±5.7 | 1 | 2353±792 | \ |
20-40% | 144.4±3.3 | 165.8±5.7 | 1 | 1099±375 | \ |
40-80% | 147.0±3.1 | 146.5±5.6 | 1 | 226±72 | \ |
0-10% | 153.4±3.1 | 243.7±13.2 | 1.05±0.06 | 818±149 | 6.4/6 |
10-20% | 154.4±3.4 | 237.4±13.6 | 1.02±0.06 | 545±106 | 8.4/6 |
20-40% | 155.4±3.2 | 225.2±12.7 | 0.94±0.05 | 309±55 | 5.3/6 |
40-80% | 154.8±3.3 | 194.8±12.0 | 0.74±0.04 | 92.9±16.7 | 8.7/9 |
0-10% | 149.8±1.5 | 234.3±4.8 | 1.05±0.05 | 1026±114 | 19.1/9 |
10-20% | 151.8±1.7 | 234.2±4.9 | 1.02±0.05 | 639±77 | 15.9/9 |
20-40% | 152.4±1.5 | 220.3±4.3 | 0.95±0.05 | 369±40 | 12.8/9 |
40-80% | 154.8±1.9 | 198.3±5.1 | 0.74±0.03 | 93.6±11.8 | 10.0/9 |
0-10% | 137.7±4.0 | 227.9±12.4 | 1 | 3593±1399 | \ |
10-20% | 140.5±4.6 | 228.3±10.8 | 1 | 1888±889 | \ |
20-40% | 143.6±3.5 | 219.8±9.3 | 1 | 849±285 | \ |
40-80% | 148.3±6.6 | 194.7±12.2 | 1 | 167±103 | \ |
0-10% | 150.5±2.7 | 297.1±13.4 | 1.07±0.06 | 772±129 | 5.4/6 |
10-20% | 152.1±2.7 | 297.0±12.5 | 1.06±0.05 | 475±80 | 6.9/6 |
20-40% | 154.7±2.8 | 281.1±12.6 | 0.91±0.05 | 266±44 | 4.2/6 |
40-80% | 157.5±3.2 | 254.8±13.2 | 0.71±0.04 | 68.3±12.3 | 6.0/6 |
0-10% | 147.2±1.3 | 281.3±4.5 | 1.07±0.05 | 975±96 | 18.1/9 |
10-20% | 148.1±1.2 | 279.9±4.0 | 1.07±0.05 | 614±60 | 17.9/9 |
20-40% | 149.0±1.2 | 266.2±3.8 | 0.96±0.04 | 362±33 | 21.8/9 |
40-80% | 153.0±1.6 | 236.1±4.7 | 0.73±0.03 | 86.7±9.1 | 9.8/8 |
0-10% | 138.9±3.3 | 265.8±9.6 | 1 | 2771±903 | \ |
10-20% | 139.4±3.2 | 270.0±9.0 | 1 | 1636±542 | \ |
20-40% | 138.2±2.9 | 267.1±8.4 | 1 | 999±294 | \ |
0-10% | 143.3±2.1 | 412.5±14.1 | 1.15±0.06 | 687±100 | 4.7/6 |
10-20% | 143.4±2.0 | 400.9±13.0 | 1.04±0.05 | 507±71 | 3.4/6 |
20-40% | 145.0±2.2 | 387.5±13.7 | 0.92±0.04 | 293±43 | 3.8/6 |
40-80% | 146.9±2.3 | 361.0±13.2 | 0.70±0.03 | 79.9±11.8 | 7.1/6 |
0-10% | 139.9±1.2 | 388.9±4.7 | 1.15±0.06 | 871±80 | 15.1/8 |
10-20% | 140.6±1.1 | 382.6±4.4 | 1.05±0.05 | 616±54 | 10.8/8 |
20-40% | 141.5±1.1 | 366.3±3.7 | 0.93±0.04 | 370±31 | 12.0/8 |
40-80% | 143.3±1.2 | 338.8±3.8 | 0.71±0.03 | 99.7±8.8 | 11.9/8 |
The upper panel of Fig. 1 shows a comparison between the particle yield per unit rapidity dN/dy and the Thermal-FIST package fitting results for Au+Au collisions at
-202504-ok/1001-8042-36-04-011/alternativeImage/1001-8042-36-04-011-F001.jpg)
The μB values obtained from the two fittings remained consistent within error. The lower panel of Fig. 1 shows the standard deviations (Std. Dev.) for different particles in the two fittings. It is evident that the deviations of strange-flavor particles K±,
Figure 2 shows a series of graphs displaying the centrality dependence of Tch from the Thermal-FIST fit with the three different particle sets for Au+Au collisions at
-202504-ok/1001-8042-36-04-011/alternativeImage/1001-8042-36-04-011-F002.jpg)
To systematically study the particle production stages, Figure 3 shows the variation in VT3/2 with collision centrality for the different particle sets at various collision energies. According to the Sackur–Tetrode equation [42], under non-relativistic conditions, VT3/2 is directly related to the entropy per nucleon (S/N) [43].
-202504-ok/1001-8042-36-04-011/alternativeImage/1001-8042-36-04-011-F003.jpg)
To provide a clear visual representation of the system's location in the two-dimensional
-202504-ok/1001-8042-36-04-011/alternativeImage/1001-8042-36-04-011-F004.jpg)
Parameterization equations for the chemical freezing parameters Tch and μB, using the collision energy
-202504-ok/1001-8042-36-04-011/alternativeImage/1001-8042-36-04-011-F005.jpg)
Particle Set | a | b | c (MeV) | d | |
---|---|---|---|---|---|
Ref. [14] | 158.4±1.4 | 2.60 | 0.45 | 1307 | 0.286 |
I | 161.8±3.6 | 0.52 | 0.79 | 1442.2±306.5 | 0.329 |
II | 153.5±0.6 | 2.82 | 0.40 | 1356.8±104.3 | 0.326 |
III | 141.7±1.4 | 8.00 | 0.21 | 829.7±127.4 | 0.184 |
Using the energy-dependent relationship between the chemical freeze-out parameters Tch and μB, we calculated the yields of various hadrons and plotted the chemical freeze-out line on a two-dimensional phase diagram at the RHIC energies. This line can provide information for determining the phase boundary from the hadronic matter to the quark-gluon plasma. Figure 6 shows the chemical freeze-out line. Because of insufficient light nuclei yield data at 7.7 GeV, for Particle Set III, we only show the region where μB < 320 MeV. It is evident that the chemical freeze-out lines differ for various particle sets. The lines for light nuclei (Particle Set III) and hadrons without light nuclei (Particle Set I) are distinctly separated, indicating that light nuclei and other hadrons freeze at different hypersurfaces. In conjunction with the results reported in Ref. [18], we can identify at least three different chemical freeze-out temperatures at the RHIC energies: the light-flavor freeze-out temperature TL = 150.2±6 MeV, strange-flavor freeze-out temperature Ts = 165.1±2.7 MeV, and light-nuclei freeze-out temperature Tln = 141.7±1.4 MeV. The fireball produced after the relativistic heavy-ion collisions exhibited three distinct freeze-out hypersurfaces. The first pertains to strange hadrons, which are expected to have relatively smaller hadronic interaction cross sections than light hadrons. Consequently, the primary yield of strangeness particles experiences little change from the phase-transition stage owing to hadronic interactions [44, 45]. As a result, they can carry temperature information from the quarks' chemical equilibrium, which is higher than the temperature at which light hadron chemical freeze-out occurs, and exhibit a clear chemical freeze-out sequence throughout the system's evolution. The light nuclei yields evolve as the system progresses, indicating that they reach chemical equilibrium much later; that is, they freeze out of the system at lower temperatures. This observation is crucial for understanding the complex particle production dynamics and thermodynamic evolution of the medium created in heavy-ion collisions.
-202504-ok/1001-8042-36-04-011/alternativeImage/1001-8042-36-04-011-F006.jpg)
It should be emphasized that our conclusions are based on existing experimental data from RHIC energies, indicating that our findings are reliable for RHIC energies. To verify whether our conclusions hold for the LHC energy, we repeated the fitting process using experimental data from the LHC. During the fitting process, we replicated the particle set in Ref. [14] and subsequently performed fits using particle sets I–III, as presented in this study. It is worth noting that owing to the absence of triton experimental data at the LHC, we utilized the yield data of 3He as a proxy for the triton yields in the fitting procedure. We also utilized all available light nuclei yield data from the LHC, including
Particle Set | Tch (MeV) | μB (MeV) | γs | V (fm3) | |
---|---|---|---|---|---|
Ref. [14] | 154.5±1.4 | 1.7±4.4 | 1.11±0.03 | 4200±383 | 30.1/18 |
I | 150.6±2.2 | 1.5±6.2 | 1.14±0.04 | 5166±641 | 21.5/6 |
II | 152.2±1.8 | 3.2±5.1 | 1.13±0.04 | 4794±530 | 23.0/9 |
III | 157.8±8.3 | 0.8±10.5 | 1 | 3037±2293 | \ |
IV | 159.2±1.3 | 1.3±6.6 | 1 | 2621±1331 | 1.2/3 |
V | 159.2±4.9 | 1.7±5.8 | 1.35±0.35 | 2623±1329 | 1.2/4 |
As can be seen in the table, in the LHC energy, specifically for Pb+Pb collisions at
Recently, the ALICE Collaboration published thermodynamic fitting results for Pb+Pb collisions at 5.02 TeV, where it was found that a Tch of 155±2 MeV provided an excellent fit to the experimental data at
Particle Set | Tch (MeV) | μB (MeV) | γs | V (fm3) | |
---|---|---|---|---|---|
Ref. [46] | 155±2 | 0.73±0.52 | 0.85/4 | ||
III | 145.2±1.5 | 0.9±2.3 | 1 | 12,782±2289 | \ |
III+ |
145.8±0.7 | 0.0±0.5 | 1 | 12,033±1139 | 0.15/1 |
The peculiarity of the results at 2.76 TeV might arise from two main factors. First, the light nuclei production mechanisms may differ at 2.76 TeV. However, there are no compelling reasons to suspect that the particle production mechanisms vary among the top energy at RHIC and the 2.76 and 5.02 TeV collisions at the LHC, all of which are high-energy collision systems. Second, energy-dependent effects may influence the collision dynamics and the resulting particle yields. However, based on our findings, we cannot provide a definitive answer, requiring further research to gain a deeper understanding of the processes underlying light nuclei production.
Summary
Thermodynamic statistical model fitting enables precise determination of chemical freeze-out parameters Tch and μB during relativistic heavy-ion collisions. These parameters offer crucial insights into the phase transition from QGP to hadronic matter. In this study, we utilized the Thermal-FIST Grand Canonical Ensemble fit to analyze the experimental data from RHIC Au+Au collisions at collision energies of
Colloquium: Phase diagram of strongly interacting matter
. Rev. Mod. Phys. 81, 1031 (2009). https://doi.org/10.1103/RevModPhys.81.1031Lattice results on QCD at high temperature and non-zero baryon number density
. Prog. Part. Nucl. Phys. 62, 503 (2009). https://doi.org/10.1016/j.ppnp.2008.12.024Beam energy dependence of jet-quenching effects in Au+Au collisions at sNN=7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV
. Phys. Rev. Lett. 121,Experimental and theoretical challenges in the search for the quark-gluon plasma: The STAR Collaboration's critical assessment of the evidence from RHIC collisions
. Nucl. Phys. A 757, 102 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.085Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
. Nucl. Phys. A 757, 184 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.086Quark-gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment
. Nucl. Phys. A 757, 1 (2005). https://doi.org/10.1016/j.nuclphysa.2005.02.130The PHOBOS perspective on discoveries at RHIC
. Nucl. Phys. A 757, 28 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.084Effects of a phase transition on two-pion interferometry in heavy ion collisions at sNN = 2.4 - 7.7 GeV
. Science China Physics, Mechanics & Astronomy 66,QCD critical end point and baryon number fluctuation
. NUCLEAR TECHNIQUES 46,Search for the qcd critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview
. Nucl. Sci. Tech. 28, 112 (2017). https://doi.org/10.1007/s41365-017-0257-0Thermal and hadrochemical equilibration in nucleus-nucleus collisions at the SPS
. Phys. Lett. B 365, 1 (1996). https://doi.org/10.1016/0370-2693(95)01258-3Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program
. Phys. Rev. C 96,Thermal hadron production in relativistic nuclear collisions: The hadron mass spectrum, the horn, and the QCD phase transition
. Phys. Lett. B 673, 142 (2009). https://doi.org/10.1016/j.physletb.2009.02.014Decoding the phase structure of QCD via particle production at high energy
. Nature 561, 321 (2018). https://doi.org/10.1038/s41586-018-0491-6Thermodynamic properties at the kinetic freeze-out in the Au + Au and Cu + Cu collisions at the RHIC using the Tsallis distribution
. Nucl. Sci. Tech. 34, 151 (2023). https://doi.org/10.1007/s41365-023-01307-yIs there still any tc mystery in lattice QCD? results with physical masses in the continuum limit iii
. J. High Energy Phys. 2010, 073 (2010). https://doi.org/10.1007/jhep09(2010)073Contrasting freezeouts in large versus small systems
. J. Phys. G: Nucl. Part. Phys. 44,Flavour and energy dependence of chemical freeze-out temperatures in relativistic heavy ion collisions from RHIC-BES to LHC energies
. Phys. Lett. B 814,Proton and deuteron distributions as signatures for collective particle dynamics and event shape geometries at ultrarelativistic energies
. Phys. Rev. C 60,Beam energy dependence of (anti-)deuteron production in Au + Au collisions at the BNL Relativistic Heavy Ion Collider
. Phys. Rev. C 99,Microscopic study of deuteron production in PbPb collisions at sNN=2.76 TeV via hydrodynamics and a hadronic afterburner
. Phys. Rev. C 99,Production of light nuclei and anti-nuclei inppand Pb-Pb collisions at energies available at the CERN Large Hadron Collider
. Phys. Rev. C 93,Antinuclei in heavy-ion collisions
. Phys. Rep. 760, 1 (2018). https://doi.org/10.1016/j.physrep.2018.07.002Strange hadron production in Au+Au collisions at sNN=7.7, 11.5, 19.6, 27, and 39 GeV
. Phys. Rev. C 102,Multiplicity scaling of light nuclei production in relativistic heavy-ion collisions
. Phys. Lett. B 820,Nucleosynthesis in the little bang
. Nucl. Sci. Tech. 35, 129 (2024). https://doi.org/10.1007/s41365-024-01477-3Searching for QCD critical point with light nuclei
. Nucl. Sci. Tech. 34, 80 (2023). https://doi.org/10.1007/s41365-023-01231-1Light nuclei production and QCD phase transition in heavy-ion collisions
. NUCLEAR TECHNIQUES 46,Experimental study of the QCD phase diagram in relativistic heavy-ion collisions
. NUCLEAR TECHNIQUES 46,Final-state interactions in the production of hydrogen and helium isotopes by relativistic heavy ions on uranium
. Phys. Rev. Lett. 37, 667 (1976). https://doi.org/10.1103/PhysRevLett.37.667Coalescence and flow in ultrarelativistic heavy ion collisions
. Phys. Rev. C 59, 1585 (1999). https://doi.org/10.1103/PhysRevC.59.1585Antimatter production in proton-proton and heavy-ion collisions at ultrarelativistic energies
. Phys. Rev. C 84,Production of light nuclei, hypernuclei and their antiparticles in relativistic nuclear collisions
. Phys. Lett. B 697, 203 (2011). https://doi.org/10.1016/j.physletb.2011.01.053Beam energy dependence of triton production and yield ratio (nt×np/nd2) in Au+Au collisions at RHIC
. Phys. Rev. Lett. 130,THERMAL-FIST: A package for heavy-ion collisions and hadronic equation of state
. Comput. Phys. Commun. 244, 295 (2019). https://doi.org/10.1016/j.cpc.2019.06.024Finite resonance widths influence the thermal-model description of hadron yields
. Phys. Rev. C 98,Systematic measurements of identified particle spectra in pp, d+Au, and Au+Au collisions at the STAR detector
. Phys. Rev. C 79,Bulk properties of the system formed in Au+Au collisions at sNN=14.5 GeV at the BNL STAR detector
. Phys. Rev. C 101. https://doi.org/10.1103/PhysRevC.101.024905Identified charged particle spectra and yields in Au+Au collisions at sNN=200 GeV
. Phys. Rev. C 69,Strange and multistrange particle production in Au+Au collisions at sNN=62.4 GeV
. Phys. Rev. C 83. https://doi.org/10.1103/PhysRevC.83.024901Strangeness enhancement in Cu-Cu and Au-Au collisions at sNN=200 GeV
. Phys. Rev. Lett. 108,On the 100th anniversary of the Sackur-Tetrode equation
. (2013). arXiv:1112.3748Light nuclei production as a probe of the QCD phase diagram
. Phys. Lett. B 781, 499 (2018). https://doi.org/10.1016/j.physletb.2018.04.035Evidence of early multistrange hadron freeze-out in high energy nuclear collisions
. Phys. Rev. Lett. 81, 5764 (1998). https://doi.org/10.1103/PhysRevLett.81.5764φ-meson production as a probe of the quark-gluon plasma
. Phys. Rev. Lett. 54, 1122 (1985). https://doi.org/10.1103/PhysRevLett.54.1122Measurements of chemical potentials in Pb-Pb collisions at sNN=5.02 tev
. Phys Rev Lett 133,Light (anti)nuclei production in Pb-Pb collisions at sNN=5.02 TeV
. Physical Review C 107. https://doi.org/10.1103/PhysRevC.107.064904Unveiling the dynamics of little-bang nucleosynthesis
. Nature Communications 15, 1074 (2024). https://doi.org/10.1038/s41467-024-45474-xThe authors declare that they have no competing interests.