logo

Numerical simulation of high-energy neutron radiation effect of scintillation fiber

ADVANCED NUCLEAR INSTRUMENTATION AND DETECTION

Numerical simulation of high-energy neutron radiation effect of scintillation fiber

MA Qingli
TANG Shibiao
ZOU Jiwei
Nuclear Science and TechniquesVol.19, No.4pp.236-240Published in print 20 Aug 2008
39600

Due to their low cost, flexibility, and convenience for long distance data transfer, plastic scintillation fibers (PSF) have been increasingly used in building detectors or sensors for detecting various radiations and imaging. In this paper, GEANT4 Monte Carlo simulation tool was used to obtain some radiation effects of PSF under high-energy neutron irradiation. BCF-20, a plastic fiber material, produced by Saint-Gobain, was used in the simulation. The fiber consists of a core scintillating material of polystyrene and an acrylic outer cladding. Incident neutrons produce energy deposition in fiber through neutron induced recoil proton events. The relationships between energy deposition efficiency and fiber length, fiber radius and incident neutron energy are presented. The variation with those parameters and parameter selection are also analyzed.

Radiation effectHigh-energy neutronScintillation fiber
References
[1] Kim K H, Klann R T, Raju B B, Nucl Instr Meth Phys Res A, 1999, 422: 929-932.
[2] Lehmann E H. Lecture Notes in Physics, 2006, 694: 231-249.
[3] Cluzeau S, Huet J, Letourneur P. Nucl Instr Meth Phys Res B, 1994, 89: 432-436.
[4] Lehmann E H, Vontobel P, Frei G, et al. Nucl Instr Meth Phys Res A, 2004, 531: 228-237.
[5] Mikerov V, Waschkowski W. Nucl Instr Meth Phys Res A, 1999, 424: 48-52.
[6] Mikerov V I, Zhitnik I A, Barmakov J N, et al. Appl Radiat Isotop, 2004, 61: 529-535.
[7] Lehmann E, Frei G, Nordlund A, et al. IEEE Trans Nucl Sci, 2005, 52: 389-393.
[8] Ress D, Lerche R A, Ellis R J, et al. Proceedings of SPIE-The International Society for Optical Engineering, 1994, 2281: 95-112.
[9] Zhang Q, Wang Q, Xie Z, et al. Nucl Instr Meth Phys Res A, 2002, 486: 708-715.
[10] Ress D, Lerche R A, Ellis R J, et al. Rev Sci Instr, 1995, 66: 4943-4948.
[11] Fujine S, Yoneda K, Yoshii K, et al. Nucl Instr Meth Phys Res A, 1999, 424: 190-199.
[12] Nasseri M M, Yin Z, Wu X, et al. Nucl Instrum Methods Phys Res B, 2004, 225: 617-622.
[13] Tang S B, Ma Q L, Yin Z J, et al. Appl Radiat Isotop, 2008, 66: 162-167.
[14] Tang S, Ma Q, Fang J, et al. IEEE Trans Nucl Sci, 2007, 54: 1773-1778.
[15] Tang S B, Yin Z J, Ma Q L, et al. Nucl Instrum Methods Phys Res A, 2003, 506: 250-303 Tang S B, Yin Z J, Ma Q L, et al. Nucl Instrum Methods Phys Res B, 2007, 263: 441-445.
[16] Mengesha W, Mascarenhas N, Peel J, et al. IEEE Nuclear Science Symposium Conference Record-Nuclear Science Symposium and Medical Imaging Conference, 2005, 535-539.
[17] Mengesha W, Mascarenhas N, Peel J, et al. Proceedings of SPIE-The International Society for Optical Engineering, 2005, 5923: 1-8.
[18] White T O. Nucl Instrum Methods Phys Res A, 2003, 506: 250-303 White T O. Nucl Instrum Methods Phys Res A, 1988, 273: 820-825.
[19]

Bicron Corporation web site

, 2003. http://www.bicron.com.
Baidu ScholarGoogle Scholar
[20] Agostinelli S, Allison J, Amako K, et al. Nucl Instrum Methods Phys Res A, 2003, 506: 250-303.
[21] Allison J, Amako K, Apostolakis J, et al. IEEE Trans Nucl Sci, 2006, 53: 270-278.
[22] Carrier J F, Archambault L, Beaulieu L. Med Phys, 2004, 31: 484-492.
[23] Aso T, Kimura A, Tanaka S, et al. IEEE Trans Nucl Sci, 2005, 52: 896-901.
[24] Amako K, Guatelli S, Ivanchencko V, et al. Nucl Phys B- Proc Suppl, 2006, 150: 44-49.
[25] Amako K, Guatelli S, Ivanchencko V N, et al. IEEE Trans Nucl Sci, 2005, 52: 910-918.
[26]

GEANT4 Physics Reference Manual

. http://geant4.web.cern.ch/geant4.
Baidu ScholarGoogle Scholar
[27] Tuli J. Evaluated Nuclear Structure Data File, BNL-NCS-51655-Rev87, 1987.
[28] Knoll G F. Radiation detection and measurement. New York: John Wiley & Sons, 1979.
[29] Leroy C. Principle of radiation interaction in matter and detection. Singapore: World Scientific Publication, 2004.