logo

Evaluation of excitation function by TALYS code for producing 109Cd with different ion beams

NUCLEAR, HEAVY ION AND ATOMIC PHYSICS

Evaluation of excitation function by TALYS code for producing 109Cd with different ion beams

SADEGHI Mahdi
MIRZAII Mohammad
GHOLAMZADEH Zohreh
Nuclear Science and TechniquesVol.20, No.4pp.243-247Published in print 20 Aug 2009
47401

TALYS code was used to calculate excitation functions for proton induced on natAg, natCd and 113In, deuteron induced on natAg and alpha induced on natPd that lead to produce 109Cd radioisotope using low and medium energy accelerators; calculates was performed out up to 50 MeV. Recommended thickness of the targets according to SRIM code was premeditated. Theoretical integral yields for any reaction were computed. TALYS 1.0 code predicts that production of a few curries of 109Cd is feasible using a target of high isotopically enriched 110Cd, proton energy of 15 to 27 MeV, however high cost of the enriched target seems to be not a practical economic alternative to produce 109Cd. The Ag+p and Ag+d processes can be an efficient route and economic for the production of millicurries of the radioisotope with incident beam energy less 15 MeV using low energy accelerator.

109CdRadioisotope productionExcitation functionsTarget thicknessYield
References
[1] Firestone R B. Table of Isotopes. Version 1.0 Wiley-Interscience, 1996.
[2] Fleming D E B, Forbes T A. Appl Radiat Isot, 2001, 55: 527-532.
[3] Arfelli F, Barbiellini G, Bonvicini V, et al. Nucl Instrum Methods Phys Res A, 1995, 367: 48-53.
[4] Lad S M, Kane P P. Instrum Methods Phys Res B, 1988, 34: 113-117.
[5] Gupta D, Chatterjee J M, Ghosh R, et al. Appl Radiat Isot, 2007, 65: 512-516.
[6] Mansur M S, Mustuq A, Mohammad A. Radioanal Nucl Chem, 1995, 20: 205-211.
[7] Albert R D. Phys Rev, 1959, 115: 925-927.
[8] Goetz L, Sabbioni E, Marafanti E, et al. Radiochem Radioanal Letts, 1980, 45: 51-59.
[9] Hassbroek F J, Burdzik G F, Cogneau M, et al. Excitation functions and thick-target yields for Ga-67, Ge-68/Ga-68, Cd-109 and In-111 induced in natural zinc and silver by 100 MeV alpha particles, Rep. 91, Council of Scientific and Industrial Research, Pretoria (CSIR-FIS-91), 1976.
[10] Read J B J, Miller J M. J Phys Rev B, 1965, 140: 623-630.
[11] Wing J, Huizenga J R. Phys Rev, 1962, 128: 280-290.
[12] Johnson C H, Galonsky A, Inskeep C N. Cross sections for (p,n) reactions in intermediate-weight nuclei. ORNL-2910, 1960, 25-28.
[13] Blaser J P, Boehm F, Marmier P, et al. Int J Helv Phys Acta, 1951, 24: 3-8.
[14] Uddin M S, Baba M, Hagiwara M, et al. Appl Radiat Isot, 2006, 64: 1013-1019.
[15] Weixiang Y, Hanlin L, Wenrong Z, et al.

The excitation functions of the 107Ag(d,2n) and (d,p) reactions. Progress Report for Beijing National Tandem Accelerator Laboratory

, 1989.
Baidu ScholarGoogle Scholar
[16] Rohm H F, Steyn J, Rautenbach W L, et al. Inorg Nucl Chem, 1970, 32: 1413-1417.
[17] Dmitriev P P, Krasnov M N, Molin G A. Yadernie Konstanti, 1982, 44: 38-43 (in Russian).
[18] Long X, Peng X, He F, et al. Appl Radiat Isot, 1991, 42: 1234-1236.
[19] Peng X, Xianguan L, He F, et al. Nucl Instrum Methods B, 1992, 68: 145-148.
[20] Tarkanyi F, Kiraly B, Ditroi F, et al. Nucl Instrum Methods B, 2006, 245: 379-394.
[21] Nortier F M, Mills S J, Steyn G F. Appl Radiat Isot, 1991, 42: 1105-1107.
[22] Koning A J, Hilarie S, Duijvestijn M. A nuclear reaction program. TALYS 1.0. NRC-Nuclear Research and Consultancy Group, 2007.
[23] Ziegler J F, Biersack J P, Littmark U. The stopping and range of ions in matter. SRIM code. NY (USA): 2006.
[24] Watanabe S. Nucl Phys, 1958, 8: 484-492.
[25] Madland D G. In proceedings of a specialists’ meeting on pre-equilibrium nuclear reactions, Austria, 1988, 103.
[26] Landini L, Osso J A. J Radioanal Nucl Chem, 2001, 250: 429-431.