logo

Studies on aggregation-propensities and secondary structural transformations of proteins

NUCLEAR, HEAVY ION AND ATOMIC PHYSICS

Studies on aggregation-propensities and secondary structural transformations of proteins

JI Li-Na
GAO Yong-Guang
ZHANG Feng
LI Hong-Tao
HU Hong-Yu
HU Jun
Nuclear Science and TechniquesVol.16, No.1pp.6-11Published in print 01 Feb 2005
26100

The insoluble and fibrillar aggregates of some proteins are thought to be the pathological cause of neurodegenerative diseases. The aggregation-propensities of different types of proteins were investigated by Thioflavine T fluorescence assay and atomic force microscopy imaging. Then, the structural transformations of the proteins from aqueous state to solid state were studied by circular dichroism spectroscopy. The results indicate that proteins of different secondary structure show variations in their aggregation-propensities, together with their various structural transformations from aqueous state to solid state. Our studies imply that the structural transformation of proteins from solution to solid state is closely associated with their aggregation-propensities, which will provide insight into the molecular mechanism of protein aggregation in neurodegenerative diseases.

Aggregation-propensitySecondary structural transformationThT fluorescenceAtomic force microscopy imagingCircular dichroism spectroscopy
References
[1] Rochet J C, Lansbury P T. Curr Opin Struct Biol, 2000, 10: 60-68.
[2] Goedert M. Nat Rev Neurosci, 2001, 2: 492-501.
[3] Soto C. Nat Rev Neurosci, 2003, 4: 49-60.
[4] Thompson L K. Proc Natl Acad Sci U S A, 2003, 100: 383-385.
[5] Safar J, Roller P P, Ruben G C et al. Biopolymers, 1993, 33: 1461-1476.
[6] Greenfield N J. Anal Biochem, 1996, 235: 1-10.
[7] Kelly S M, Price N C. Biochim Biophys Acta, 1997, 1338: 161-185.
[8] Formaggio F, Crisma M, Toniolo C et al. Biopolymers, 1996, 38: 301-304.
[9] Hu H Y, Li Q, Cheng H Q et al. Biopolymers, 2001, 62: 15-21.
[10] Du H N, Ding J G, Cui D F et al. Chin J Chem, 2002, 20: 697-698.
[11] Spillantini M G, Schmidt M L, Lee V M et al. Nature, 1997, 388: 839-840.
[12] Dickson D W. Curr Opin Neurol, 2001, 14: 423-432.
[13] Spillantini M G, Crowther R A, Jakes R et al. Proc Natl Acad Sci USA, 1998, 95: 6469-6473.
[14] Weinreb P H, Zhen W, Poon A W et al. Biochemistry, 1996, 35: 13709-13715.
[15] Du H N, Tang L, Luo X. Y et al. Biochemistry, 2003, 42: 8870-8878.
[16] Bedford M T, Leder P. TIBS, 1999, 24: 264-265.
[17] Allen M, Friedler A, Schon O et al. J Mol Biol, 2002, 323: 411-416.
[18] Staub O, Rotin D. Structure, 1996, 4: 495-499.
[19] Faber P W, Barnes G T, Srinidhi J et al. Hum Mol Genet, 1998, 7: 1463-1464.
[20] Gronenborn A M, Filpula D R, Essig N Z et al. Science, 1991, 253: 657-661.
[21] Park S H, O’Neil K T, Roder H. Biochemistry, 1997, 36: 14277-14283.
[22] Vijay-Kumar S, Bugg C E, Wilkinson K D et al. Proc Natl Acad Sci USA, 1985, 82: 3582-3585.
[23] Hershko A, Ciechanover A. Annu Rev Biochem, 1998, 67: 425-479.
[24] LeVine H. Methods Enzymol, 1999, 309: 274-284.
[25] Serpell L C, Berriman J, Jakes R et al. Proc Natl Acad Sci USA, 2000, 97: 4897-4902.
[26] Hu H Y, Du H N. J Protein Chem, 2000, 19: 177-183.
[27] Fandrich M, Fletcher M A, Dobson C M. Nature, 2001, 410: 165-166.
[28] Pavlov N A, Cherny D I, Heim G et al. FEBS Lett, 2002, 517: 37-40.