logo

A general fan-beam reconstruction algorithm for free-form trajectories

ADVANCED NUCLEAR INSTRUMENTATION AND DETECTION

A general fan-beam reconstruction algorithm for free-form trajectories

LI Liang
CHEN Zhi-Qiang
WANG Ge
KANG Ke-Jun
Nuclear Science and TechniquesVol.16, No.3pp.171-176Published in print 01 Jun 2005
23400

In this paper we develop a general exact fan-beam reconstruction algorithm for free-form trajectories not only closed but also unclosed, based on the fan-beam reconstruction formula recently developed by Noo et al.. A mathematical proof is then provided with the geometrical explanation of equi-spatial detectors. With this algorithm we can obtain exact region of interest (ROI) reconstruction if and only if every projecting line passing through the ROI intersects the free-form source trajectory, when the projections are not truncated. Furthermore, under the condition that the source-to-detectors distance changes slowly enough relative to the length itself, we obtain a very good approximate reconstruction algorithm, which is the same as the algorithm of the circular trajectory except that the source-to-detectors distance is a function of the rotation angle. Then the algorithms are tested using the Shepp-Logan phantom and the experiment shows that the algorithms can get perfect numerical results.

TomographyFan-beamImage reconstructionRegion of Interest (ROI)
References
[1] Herman G T, Naparstek A. SIAM J Appl Math, 1977, 33: 511-533
[2] Horn B K P. Proc IEEE, 1979, 67: 1616-1623
[3] Weinstein F S. J Opt Soc Amer, 1980, 70: 931-935
[4] Smith B D. IEEE Trans Med Imag, 1985, MI-4: 177-184
[5] Hu H, Gullberg G T, Kruger R A. IEEE Trans Med Imag, 1988, 7(3): 233-238
[6] Wang Ge, Lin Tein-Hsiang, Cheng Ping-chin. IEEE Trans Med Imag, 1993, 2(4): 543-547
[7] Noo F, Defrise M, Clackdoyle R et al. Phys Med Biol, 2002, 47: 2525-2546
[8] Parker D L. Med Phys, 1982, 9: 254-257
[9] Kudo H, Noo F, Defrise M et al. “

New super-short-scan algorithm for fan-beam and cone-beam reconstruction

”, Records of the 2002 IEEE Nuclear Science and Medical Imaging Symposium, paper M5-3, 2003
Baidu ScholarGoogle Scholar
[10] Katsevich . SIAM J Appl Math, 1996, 56(1): 167-191
[11] Yu Hengyong, Wang Ge. Med Phys, 2004, 31(6): 1357-1362
[12] Proksa R, Köhler T, Grass M et al. IEEE Transactions on Medical Imaging, 2000, 19(9): 848-863
[13] Turbell H. “Cone-beam reconstruction using filtered backprojection” [M], SE-581 83 Linkoping, Sweden, 2001: 19-23
[14] Katsevich . SIAM J Appl Math, 2002, 62(7): 2012-2026
[15] Katsevich . Int'l J of Math and Math Sci, 2003, 21: 1305-1321
[16] Katsevich . SPIE Medical Imaging, San Diego, 2003: 663-674