logo

Neural network-based matrix effect correction in EDXRF analysis

LOW ENERGY ACCELERATOR, RAY TECHNOLOGY AND APPLICATIONS

Neural network-based matrix effect correction in EDXRF analysis

TUO Xianguo
CHENG Bo
MU Keliang
LI Zhe
Nuclear Science and TechniquesVol.19, No.5pp.278-281Published in print 20 Oct 2008
48300

In this paper we discuss neural network-based matrix effect correction in energy dispersive X-ray fluorescence (EDXRF) analysis, with detailed algorithm to classify the samples. The method can correct the matrix effect effectively through classifying the samples automatically, and influence of X-ray absorption and enhancement by major elements of the samples is reduced. Experiments for the complex matrix effect correction in EDXRF analysis of samples in Pangang showed improved accuracy of the elemental analysis result.

Self-organizing mapping neural networkCluster analysisMatrix effectSinter mineral
References
[1] Cheng B, Tuo X, Zhou J. J Chengdu Univ Technol, 2002, 29: 65-68.
[2] Kohonen T. Biolog Cybern, 1982, 43: 665-672.
[3] Setiono R, Connect Sci, 1995, 7: 145-164.
[4] Girosi F, Poggio T. Biolog Cybern, 1990, 6: 169-176.
[5] Jiang D, Tang C, Zhang A. IEEE Trans Knowl Data Eng, 2004, 16: 1370-1386.