logo

Potential application of SSRF in radiation oncology: The aspects of radiobiology

SYNCHROTRON TECHNOLOGY AND APPLICATIONS

Potential application of SSRF in radiation oncology: The aspects of radiobiology

FU Shen
JIANG Guoliang
Nuclear Science and TechniquesVol.20, No.6pp.325-330Published in print 20 Dec 2009
37500

Conventional radiotherapy remains to be one of the most useful treatments for cancer, but it is not the best strategy to maximize the effects on the tumors and minimize the damage to the surrounding tissues because of its physical and radiobiological characteristics. Synchrotrons represent a unique method for an innovative anti-cancer treatment due to the physical features (i.e. high fluence, tunable and collimated) of X-ray induced by synchrotron, so photon activation therapy and microbeam radiation treatment have been developed, but it is very imperative to understand the radiobiological mechanism of synchrotron radiation before we could transfer the strategy into the clinic. This paper is to summary the results of in vitro and in vivo experiments with synchrotron radiation, and review the advances of molecular and cellular radiobiological mechanism involved in synchrotron radiation. Since Shanghai Synchrotron Radiation Facility (SSRF) has produced the first synchrotron, it will provide the unique opportunity for the study of radiobiological effects of synchrotron radiation.

Synchrotron radiationRadiobiologyPhotoactivated radiotherapyMicrobeam radiation therapy
References
[1] Blewett J P. J Synchrot Radiat, 1998, 5: 135-139.
[2] Leksell L. J Neurol Neurosurg Psychiatry, 1983, 46: 797-803.
[3] Mohiuddin M, Fujita M, Regine W F, et al. Int J Radiat Oncol Biol Phys, 1999, 45: 721-727.
[4] Huhn J L, Regine W F, Valentino J P, et al. Technol Cancer Res Treat, 2006, 5: 607-612.
[5] Meigooni A S, Gnaster M, Dou K, et al. Med Phys, 2007, 34: 599-603.
[6] Xu Hongjie, Zhao Zhentang, Nucl Sci Tech, 2008, 19: 1-6.
[7] Norman A A, Cochran S T, Sayre J W. Radiat Res, 2001, 155: 740-743.
[8] Nariyama N, Ohigashi T, Umetani , et al. Appl Radiat Isotopes, 2009, 67: 155-159.
[9] Rose J H, Norman A, Ingram M, et al. Int J Radiat Oncol Biol Phys, 1999, 45: 1127-1132.
[10] Adam J F, Joubert A, Biston M C, et al. Int J Radiat Oncol Biol Phys, 2006, 64: 603-611.
[11] Corde S, Biston M C, Elleaume H, et al. Radiat Res, 2002, 158: 763-770.
[12] Cepeda V, Fuertes M A, Castilla J, et al. Anticancer Agents Med Chem, 2007, 7: 3-18.
[13] Rabik C A, Dolan M E. Cancer Treat Rev. 2007 33: 9-23.
[14] West S C. Nat Rev Mol Cell Biol, 2003, 4: 435-445.
[15] Lieber M R. J Biol Chem, 2008, 283: 1-5.
[16] Biston M C, Joubert A, Adam J F, et al. Cancer Res, 2004, 64: 2317-2323.
[17] Corde S, Balosso J, Elleaume H, et al. Cancer Res, 2003, 63: 3221-3227.
[18] Hennequin C, Giocanti N, Averbeck D, et al. Nucleic Acids Res, 2003, 31: 5377-5388.
[19] Zhang J, Powell S N. Cancer Res, 2005, 3: 531-539.
[20] Curtis H J. Radiat Res Suppl, 1967, 7: 250-257.
[21] Baker C P, Curtis H J, Zeman W, et al. Radiat Res, 1961, 15: 489-495.
[22] Ohno Y, Torikoshi M, Suzuki M. Med Phys, 2008, 35: 3252-3258.
[23] Orion I, Rosenfeld A B, Dilmanian F A,et al. Med Phys, 2002, 45: 2497-2508.
[24] Slatkin D N, Spanne P, Dilmanian F A, et al. Proc Natl Acad Sci USA, 1995, 92: 8783-8787.
[25] Brauer-Krisch E, Bravin A, Lerch M,et al. Med Phys, 2003, 30: 583-589.
[26] Miura M, Blattmann H, Brauer-Krisch E, et al. Br J Radiol, 2006, 79: 71-75.
[27] Dilmanian F A, Morris G M, Le Duc G, et al. Cell Mol Biol (Noisy-legrand), 2001, 47: 485-493.
[28] Laissue J A, Blattman H, Wagner H P,et al. Dev Med Child Neurol, 2007, 49: 577-581.
[29] Withers H R, Taylor J M G, Maciejewski B. Int J Rad Oncol Biol Phys, 1988, 14: 751-759.
[30] Blattmann H, Gebbers J O, Bräuer-Krisch E, et al. Nucl Instrum Methods Phys Res A, 2005, 548: 17-22.
[31] Serduc R, Verant P, Vial J C, et al. Int J Radiat Oncol Biol Phys, 2006, 64: 1519-1527.
[32] Dilmanian F A, Qu Y, Feinendegen L E, et al. T Exp Hematol, 2007, 35(Suppl. 1): 69-77.
[33] Dilmanian F A, Qu Y, Liu S, et al. Nucl Instrum Methods Phys Res A, 2005, 548: 30-37.
[34] Laissue J A, Lyubimova N, Wagner H P, et al. Proc SPIE, 1999, 3770: 38-45.
[35] Dilmanian F A, Button T M, Le Duc G, et al. J Neuro-Oncol, 2002, 4: 26-38.
[36] Dilmanian F A, Romanelli P, Zhong Z, et al. Eur J Radiol, 2008, 68S: 129-136.
[37] Laissue J A, Geiser G, Spanne P O, et al. Int J Cancer, 1998, 78: 654-660.
[38] Azzam E I, de Toledo S M, Little J B,et al. Curr Cancer Drug Targets, 2004, 4: 53-64.
[39] Mothersill C. Seymour C. Mutat Res, 2004, 568: 121-128.
[40] Mothersill C. Seymour C B. Nat Rev Cancer, 2004, 4: 158-164.
[41] Regnard P, Brauer-Krisch E, Tropres I, et al. Eur J Radiol, 2008, 68S: 151-155.
[42] Hamada N, Matsumoto H, Hara T, et al. J Radiat Res, 2007, 48: 87-95.
[43] Zhong N, Morris G M, Bacarian T, et al. Radiat Res, 2003, 160: 133-142.