logo

Study of automobile exhaust particles by spectromicroscopy

SYNCHROTRON SCIENCE AND TECHNOLOGY

Study of automobile exhaust particles by spectromicroscopy

YANG Chuanjun
GUO Zhi
ZHANG Xiangzhi
WANG Yong
XU Zhijian
ZHANG Lijuan
TAI Renzhong
BAO Liangman
LI Xiaolin
ZHANG Guilin
LI Yan
Nuclear Science and TechniquesVol.21, No.5pp.261-265Published in print 20 Oct 2010
31400

In this paper, automobile exhaust particles of Gol and Santana 3000 were studied by spectromicroscopy. The STXM results show that the single particulate is sized at 500 nm, with the mass distribution reducing towards the center. The N 1s NEXAFS spectra of automobile exhaust particles have similar structure with those of nitrates, which can be deduced as the main chemical species of nitrogen in automobile exhaust particles. There are minor amounts of ammoniums and organic nitrogen compounds in automobile exhaust particles. A single Gol automobile exhaust particle was stack scanned in the energy range of 396–416 eV. By principal component analysis and cluster analysis, it can be deduced that there are main three chemical species of nitrogen. The particle surface consists of mainly nitrates, the inside consists of mainly ammonium and organic nitrogen compounds, and the middle layer is an intergradation consisting of mainly nitrates and organic nitrogen compounds.

STXMNEXAFSAutomobile exhaust particulate
References
[1] Becker K, Lrzer J, Kurtenbach R, et al. Chemosphere Global Change Sci, 2000, 2:387-395.
[2] Carslaw D, Beevers S. Atmos Environ, 2005, 39: 167-177.
[3] Wichmann, H. Inhalation Toxicol. 2007, 19:241-244.
[4] Cook A, Weinstein P, Centeno J. Biological trace element res. 2005, 103: 1-15.
[5] Brunekreef B, Janssen N, de Hartog J, et al. Epidemiology 1997, 8: 298-303.
[6] Van Vliet P, Knape M, de Hartog J, et al. Environ Res. 1997, 74:122-132.
[7] Venn A, Lewis S, Cooper M, et al. Am J Respir Crit Care Med. 2001, 164: 2177-2180.
[8] JIANG D, QIU Z J, LU R R, et al. Nucl Sci Tech, 2002, 13: 57-64.
[9] Sha Y, Shi J, Zhang P, et al. Nucl Sci Tech, 1996, 7:61-64.
[10] Yue W, Li Y, Li X, et al. J Synchrotron Radiat, 2004, 11: 428-431.
[11] Vogt R, Kirchner U, Scheer V, et al. J Aerosol Sci, 2003, 34: 319-337.
[12] Matti Maricq M J. Aerosol Sci, 2007, 38:1079-1118.
[13] Tzvetkov G, Graf B, Wiegner R, et al. Micron, 2008, 39: 275-279.
[14] Mitrea G., Thieme J, Guttmann P, et al. J Synchrotron Radiat, 2008, 15: 26-35.
[15] Hitchcock A P, Hernández-Cruz D, Dynes J J, et al. Microsc Microanal, 2006, 12: 1396-1397.
[16] Chen J. Surf Sci Rep, 1997, 30:1-1527.
[17] Braun A, Huggins F, Kubátová A, et al. Environ Sci Technol, 2008, 42:374-380.
[18] Braun A, Shah N, Huggins F, et al. Fuel 2004, 83: 997-1000.
[19] Braun A. J Environ Monit, 2005, 7: 1059-1065.
[20] Leinweber P, Kruse J, Walley F, et al. J Synchrotron Radiat, 2007, 14: 500-511.
[21] Török S, Osan J, Beckhoff B, et al. Powder Diffr. 2004, 19: 81-86.
[22] Jeong H, Kim C. Bull Korean Chem Soc 2007, 28: 413-416.