logo

The interaction of defects in titanium: A molecular dynamics study

LOW ENERGY ACCELERATORS AND RADIATION APPLICATIONS

The interaction of defects in titanium: A molecular dynamics study

CHEN Min
HOU Qing
Nuclear Science and TechniquesVol.21, No.5pp.271-274Published in print 20 Oct 2010
33100

Behaviors and properties of helium in titanium were explored by molecular dynamics (MD) simulation in this study. The influence of He number, vacancy number and He density (ratio of helium to vacancy) on the thermal stability of HenVm clusters (where n and m denote the number of He atoms and vacancies) were investigated. Meanwhile, interactions among He atoms, SIA atoms and vacancies were discussed. The results demonstrate that the binding energies of an interstitial helium atom primarily depend on He and vacancy numbers rather than the helium-to-vacancy ratio (n/m). It is different from the previous report of other researchers. The binding energies of an isolated vacancy and a self-interstitial titanium atom depend on both the number of helium atoms and the helium-to-vacancy ratio (n/m) of clusters. The thermal stability of clusters is decided by the competitive processes among thermal emissions of vacancy, SIA and helium atom.

Molecular dynamicsBinding EnergyHelium-Vacancy clusterTitanium
References
[1] Morishita K, Sugano R, Wirth B D. J Nucl Mater, 2003, 323: 243-250.
[2] Adams J B, Wolfer W G. J Nucl Mater, 1989, 166(3): 235-242.
[3] Seletskaia T, Osetsky Y N, Stoller R E, et al. J Nucl Mater, 2006, 351: 109-118.
[4] Cayphas J M, Hou M, Coheur L. J Nucl Mater, 1997, 246: 171-179.
[5] Murali S. J Alloy Compd. 2006, 426: 200-204.
[6] Lu C, Ni S, Chen W, Zhang C, Wang Y. Nucl Sci Tech, 2008, 19: 365-369.
[7] Morishita K, Sugano R, Wirth B D, et al. Nucl Instr Meth, 2003, B202: 76-81.
[8] Ao B, Wang X, Hu W, Yang J. Phys Status Solidi B, 2008, 245: 1493-1497.
[9] Gao F, Heinisch H, Kurtz RJ. J Nucl Mater, 2006, 351: 133-140.
[10] Adams JB, Wolfer WG. J Nucl Mater, 1988, 158: 25-29.
[11] Baskes MI, Wilson WD. J Nucl Mater, 1976, 63: 126-131.
[12] Yang XY, Hu WY, Yuan XJ, et al. Chinese Physics B, 2008, 17(7): 2633-2638.
[13] Finnis MW, Agnew P, Foreman AJE. Phys Rev B, 1991, 44: 567.
[14] Hou Q, Hou M, Bardotti L, et al. Phys Rev B, 2000, 62: 2825.
[15] Cleri F, Rosato V. Phys Rev B, 1993, 48: 22-33.
[16] Nieminen RM. In: Donnelly SE, Evans JH (eds). Fundamental Aspects of Inert Gases in Solids. New York: Plenum, 1991:3.
[17] Wang J, Hou Q, Sun TY, et al. Chin Phys Lett, 2006, 23(7): 1666-1669.
[18] Wang J, Hou Q, Sun T, et al. J Appl Phys, 2007, 102: 093510.
[19] Chen M, Hou Q, Wang J, et al. Solid State Commun, 2008, 148: 178-181.
[20] Chen M, Wang J, Hou Q. Acta Phys. Sin. 2009, 58: 1149-1153 (in Chinese).
[21] Chen M, Hou Q. Acta Phys Sin, 2010, 59: 1192-1196 (in Chinese).
[22] Wilson W D, Bisson C L, Baskes M I. Phys Rev B, 1981, 24: 5616-5624.
[23] Van der Kolk G J, van Veen A, Caspers LM, et al. J Nucl Mater, 1985, 127: 56-66.