logo

Source apportionment of single aerosol particles in the atmosphere of Shanghai city

Source apportionment of single aerosol particles in the atmosphere of Shanghai city

QIU Zhi-Jun
LU Rong-Rong
GUO Pan-Lin
WANG Ji-Qing
QIU Hui-Yuan
LI Xiao-Lin
ZHU Jie-Qing
REINERT T
HEITMANN J
SPEMANN D
VOGT J
FLAGMEYER R H
BUTZ T
Nuclear Science and TechniquesVol.12, No.3pp.215-233Published in print 01 Aug 2001
27400

A nuclear microprobe with high spatial resolution and high analyti cal sensitivity was applied to analyze atmospheric aerosol at five monitoring sites in Shanghai city. Meantime, a new pattern recognition technique, which used the micro PIXE spectrum of a single aerosol particle as its fingerprint, was developed to identify the origin of the particle. The results showed that the major contributors to the atmosphere pollution were soil dust (31.6%), building dust (30.8%), and the next were vehicle exhaust (13.7%), metallurgic industry excrements (5.6%), oil combustion (5%) and coal combustion (2.3%). Besides these, about 10% of the particles could not be identified. Based on the cluster analysis of these particles, they could be divided into eight groups. By inference, they might belong to some sub-pollution sources from soil dust, building dust and metallurgic industry excrements. Moreover, some new pollution sources from tyres and chemical plants were also revealed.

Single aerosol particle analysisSource apportionmentNuclear microprobePattern recognition technique
References
1 Watson J G, Chow J C, Aerosol measurement: principles, techniques and applications. New York: Van Nostrand Reinhold, 1993: 120
2 Chow J C, Watson J G, Lowenthal D H et al. Atmos Environ, 1992, 26a: 3335~3354
3 Wei F, Teng E, Wu G et al. Environ Sci Tech, 1999, 33: 41884193
4 Maenhaut W, Salomonbic R. Ptasinski J et al. Nucl Instr Meth, 1997, B130: 576~581
5 Orlic I, Osipowicz T, Watt F et al. Nucl Instr Meth, 1995, B104: 630637
6 Grim G W. X-ray spectrosc, 1998, 27: 221231
7 Jambers W, Grieken R V. Trends Anal Chem, 1996, 15: 114~122
8 Hickmott D D, Herrin J M, Abell R et al. Nucl Instr Meth, 1997, B130: 564570
9 Orlic I. Nucl Instr Meth, 1995, B104: 602611
10 Artaxo P, Rabello M L C, Watt F et al. Nucl Instr Meth, 1993, B75: 521525
11 Orlic I, Watt F, Loh K K et al. Nucl Instr Meth, 1994, B85: 840~844
12 Cohen D D, Garton D, Stelcer E. Nucl Instr Meth, 2000, B161/163: 775~779
13 Jaksic M, Bogdanovic I, Gereda E et al. Nucl Instr Meth, 1993, B77: 505508
14 Orlic I, Zhou S, Watt F. Nucl Instr Meth, 1999, B158: 505510
15 Chen M, Chen J, Li D. Shanghai Environ Sci (in Chinese), 1997, 16(10): 15~17
16 Sha Y, Gu Y, Liu G et al. Nucl Instr Meth, 1996, B109/110: 7984
17 Sha Y, Shi J, Gu Y et al. Nucl Sci Tech (China), 1996, 7: 61~64
18 Butz T. Flagmeyer R -H, Heitmann J etal. Nucl Instr Meth, 2000, B161/163: 323327
19 Tanabe K, Tamura T, Uesaka H. Appl Spectrose, 1992, 46(5): 807~810
20 Mitternayr C R, Drouen A C J H, Otto M. Anal Chim Acta, 1994, 294(2): 227242
21 Cheng Z, Li M, Xu S. Nucl Tech (in Chinese), 1996, 19(8): 449452
22 Bos M, Weber H T. Anal Chim Acta, 1991, 247(1): 97105
23 Allanic A L, Jezequel J Y, Andre J C. Anal Chem, 1992, 64(21): 2618~2622
24 McClelland J L, Rumelhart D E. Parallel distributed processing. Cambridge: MIT Bradfort Press, 1986
25 Fan X, Zhang W, Han S. Environ Sci (in Chinese), 1999, 20(5): 102~108
26 Weingartner E, Kelles C, Stahel W A et al. Atmos Environ, 1997, 31: 451462