logo

Neural network for mass reconstruction of resonance particle with missing energy

Neural network for mass reconstruction of resonance particle with missing energy

Zhang Zi-Ping
Nuclear Science and TechniquesVol.7, No.2pp.65-68Published in print 01 May 1996
19000

Neural Network can be designed to reconstruct the mass of resonance particle with large missing energy. Taking the Higgs particle search through decaying channel H0τ+τ- →eµx and H0→W+W-(ZZ)→llvv at LHC collider ( s TeV) as examples, neural network correctly reconstructs its mass with right peak position and better width than conventional method. The network also possesses the capability of suppressing background events. This kind of neural network can be widely used in new particle search and precise mass measurement of resonance particle.

Neural networkMass reconstructionResonance particlesHiggs search
References
1 Bellantoni L, Conway J S, Jacobsen J E et al., CERN-PPE/91-80, 1991
2 Innoc ente V, Wang Y F, Zhang Z P. Nucl Instr and Meth, 1992; A323: 647
3 Bortolotto C, De Angelis A, Lanceri L. Nucl Instr and Meth, 1991; A306: 459
4 Lönnblad L, Peterson C, Rögnvaldsson T. Phys Lett, 1992; B278: 181
5 Joswig M, Kolanoski H, Kublun S et al., DESY 93-167, preprint
6 Lella L D. CERN 90-10/ECFA 90-133, 1990; II: 530
7 Bos K, Anselmo F, Eijk B. CERN 90-10/ECFA 90-133: 538
8 Kunszt Z, Zwirner F. CERN 90-10/ECFA 90-133: 578
9 Sjöstrand T. PYTHIA5.6 and JETSET7.3 physics and mannual, CERN-TH. 6488/92, 1992
10 Lönnblad L, Peterson C, Rögnvaldsson T. Nucl Phys, 1991; B349: 675