Introduction
In recent years, neural networks have been applied in computed tomography (CT) imaging. Several studies on the applications of such networks have been published, and their potential in solving several problems in the field of CT imaging has been extensively evaluated. Such networks have been used in applications such as spectral distortion correction [1, 2] for photon-counting X-ray CT, dual-domain learning for two-dimensional [3, 4] and three-dimensional [5-7] low-dose CT reconstruction, sparse-view [8] and limited-angle [9] CT reconstruction, noise suppression in the sinogram domain [10] and image domain [11], dual-energy imaging with energy-integrating detectors [12] and photon-counting detectors [13], and CT artifact reduction [14, 15]. However, neural networks have not yet been widely used in practice owing to their confidence scores. Hence, researchers have adopted objective and subjective image quality assessments to evaluate the feasibility of using neural networks in CT imaging [16, 17]. However, traditional metrics are preferred for objective assessments. The commonly used contrast-to-noise ratio measures the region of interest (ROI) clarity, signal-to-noise ratio measures the noise level, noise power spectrum (NPS) measures the noise correlation, and modulation transfer function measures the spatial frequency [18, 19]. Neural networks are normally nonlinear, nonstationary, and unexplainable; however, to the best of our knowledge, limited research on theoretically tractable methods has been conducted.
Subjective assessments are commonly used in the field of CT imaging. Radiologists are invited to observe and score images obtained from various methods [20, 21]. Because subjective assessments are time-consuming and laborious, researchers study model observers to simulate the evaluation behavior of radiologists. The assessment of image quality carried out by a radiologist, that is, a human observer, is modeled as a classification problem solved by hypothesis testing. The likelihood ratio is used as the decision variable to obtain an ideal observer (IO). Because the IO is intractable, a linear approximation of the IO is assumed to obtain a Hotelling observer (HO). Combining the human-eye model with HO, researchers have obtained the most widely used channelized Hotelling observer (CHO) [22]. The CHO agrees well with human observers [23, 24]; however, it requires knowledge of the image mean and covariance. Recently, neural networks have been introduced to explore nonlinear model observers that enable better approximation of the human observer or better detectability for auxiliary diagnoses [25-27]. However, these methods only target traditional reconstruction methods [28, 29]. The application of these methods to neural network reconstruction has not yet been explored.
Noise propagation through a reconstruction neural network is necessary for assessing the performance of the network. Covariance prediction can reveal the uncertainty in inference, thus providing a safer answer to the CT reconstruction problem. Furthermore, it can be used in the calculation of model observers and subjective assessments.
The covariance estimation of neural-network outputs is currently of significant interest. Abdelaziz et al. [30] studied the uncertainty propagation of deep neural networks for automatic speech recognition with the assumption that the output was Gaussian. Lee et al. [31] used a Gaussian process equivalent of a deep fully connected neural network to obtain an exact Bayesian inference under the assumption that the parameters and layer outputs follow an independent and identical distribution. Tanno et al.[32] simultaneously estimated the mean and covariance of high-resolution outputs from low-resolution magnetic resonance images based on the assumption of a Gaussian distribution. However, for CT imaging, covariance estimation of the neural network output has not yet been studied.
In this study, we propose a new analytical noise propagation method, that is, covariance estimation, particularly for a convolutional neural network (CNN) in CT imaging of noisy projections. With a trained CNN ready for inference, we propagate the noise layer by layer. For linear layers, the output covariance can be calculated accurately. For nonlinear activation layers, we perform a Taylor expansion to obtain a linear approximation, which enables linear propagation of noise through the nonlinear layers. Because a CNN is a stack of linear and nonlinear layers, its covariance estimation is a combination of layer noise propagations. We validate the results of the covariance estimation method by comparing the results with those of statistical estimations using noisy projection and reconstruction samples with different phantoms, noise levels, and activation functions.
Methods
Physical Model for CT Imaging
A simple model for data acquisition in a CT scan is formulated as
Analytical, iterative, and neural network methods can be used to reconstruct a linear attenuation coefficient map
Covariance Propagation through Basic Layers of a CNN
Let vector
Convolution Layer
For a convolutional layer, its output
Activation Layer
In an activation layer, an input is normally fed into a nonlinear function,
Batch Normalization Layer
For a batch normalization layer, the input is normalized as
Here,
Pooling Layer
Average pooling is a widely used method in this field. This can be interpreted as a convolution operation of kernel size
Here, the average pooling matrix
Up-sampling Layer
For an up-sampling layer, each element of the input is duplicated and can be expressed as a linear combination of the input:
Example: U-net
We adopt a commonly used U-net structure to denoise the projection, followed by reconstruction with the filter back projection (FBP) method:
Here,
-202206/1001-8042-33-06-011/alternativeImage/1001-8042-33-06-011-F001.jpg)
We iteratively estimate the covariance of reconstruction predicted from the trained U-net:
With a concatenation operation, the 7th layer contains feature maps from the 1st and 6th layers. Thus, three types of covariances for the 7th layer must be present: 1) covariance between channels in the 6th layer, 2) covariance between channels in the 1st layer, and 3) covariance between channels in the 1st layer and 6th layer. The covariance of cases 1) and 2) has already been estimated using Eq. (15), and the covariance of case 3) can be estimated as
Therefore, the covariance estimation of the 7th layer is
With a residual operation, the output projection represents the sum of the input projection and output residue of the 9th layer. Thus, the covariance of the output projection also consists of three parts: 1) covariance of the input projection, 2) covariance of the output residue of the 9th layer, and 3) covariance between the input projection and output residue. Only the covariance estimation of case 3) should be calculated because cases 1) and 2) are estimated using Eq. (15):
The covariance estimation of the 10th layer is then calculated as
Combining Eqs. (15)–(19), we obtain the final covariance estimation of the reconstruction:
A gradient discontinuous function, LeakyReLU, and a gradient continuous function, Swish, are chosen as activation functions to detect the influence of activation functions on the covariance estimation of the CNN.
LeakyReLU Activation Function
The LeakyReLU function and its corresponding gradient are expressed as
The Taylor-based coefficient matrix in Eq. (6) is
Swish Activation Function
The Swish function is another commonly used activation function:
Its gradient is
Thus, the Taylor-based coefficient matrix is
Experiments
The projection data used for training are generated from the Grand Challenge dataset of the Mayo Clinic. We randomly choose a reconstruction dataset of one patient and select various ROIs with sizes of 128 × 128 pixels as phantoms. Geometrical parameters of the simulated system are listed in Table 1. By setting the number of incident photons to
Parameter | Value |
---|---|
Source to origin distance (mm) | 200 |
Origin to detector distance (mm) | 200 |
Scanning angle | |
Detector pixel size (mm) | 0.5 |
Detector pixel number | 240 |
Image pixel size (mm) | 0.3 |
Image pixel number | 128 |
Using noise-free projections as labels and noisy projections as inputs, we train U-net by minimizing an L2 norm loss function between labels and outputs. In addition, we fix the hyper-parameter
Noisy projections used for inference are generated from another patient dataset in the same manner. We generate noisy projections of different phantoms and noise levels to validate the proposed analytical noise propagation method and analyze the performance of U-net using the analytically estimated covariance. Information on the noisy projections generated for prediction is presented in Table 2. Note that the number of incident photons increases linearly from 103 to 5.05 × 104. The reconstruction of both phantoms using
Number of generatednoise realizations | |||||
---|---|---|---|---|---|
Test phantom A | - | - | 1000 | - | - |
Test phantom B | 1000 | 1000 | 1000 | 1000 | 1000 |
-202206/1001-8042-33-06-011/alternativeImage/1001-8042-33-06-011-F002.jpg)
In addition, we conduct a practical experiment to validate our proposed method. The experimental platform and phantom are presented in Fig. 3. The scanning parameters are presented in Table 3. We repeat the scan 450 times at each angle and acquire projection data of 360 views using
Parameters | Before binning | After binning |
---|---|---|
Source to origin distance (mm) | 750.2 | 750.2 |
Origin to detector distance (mm) | 433.84 | 433.84 |
Detector pixel size (mm) | 0.45 | 1.80 |
Detector pixel number | 896 | 224 |
Image pixel size (mm) | 0.48 | 1.92 |
Image pixel number | 512 | 128 |
Tube voltage/current | 110 kV/2.5 mA | 110 kV/2.5 mA |
-202206/1001-8042-33-06-011/alternativeImage/1001-8042-33-06-011-F003.jpg)
Covariance estimation from a statistical method is used as a reference in this study.
The generalization error (GE) [33] represents the sum of the bias and variance and measures the generalization ability of a neural network:
A pixel-wise noise reduction percentage (NPR) is calculated to analyze the denoising performance of U-net.
Here,
We also calculate the NPS to analyze the noise spatial correlation of U-net in the Fourier domain:
Experimental Results
Because the linear approximation of nonlinear activation functions requires the mean of the input in Eq. (6), we only use one noise realization as the mean of the input to analytically estimate the covariance of the projection acquired by U-net and its corresponding reconstruction by FBP.
Validation of the Proposed Analytical Covariance Estimation Method for U-net
For test phantom A, the variance of the projections obtained by U-net is illustrated in Fig. 4(a), and its covariance at the center of the projections is presented in Fig. 4(b). The results reveal that the variance estimation is in agreement with the reference for both the activation functions. The error between the variance estimation and reference is not significant compared with the variance itself. We observe that the variance obtained from LeakyReLU varies sharply when approaching the boundary, whereas that from Swish changes smoothly. Meanwhile, the covariance estimation also agrees with the reference, where the error is primarily statistical. The shape of the covariance from the two activation functions is quite different; it is circular for LeakyReLU and elliptical for Swish. For test phantom B, good agreement can still be observed between the variance estimation and reference (as shown in Fig. 4(c)). Sharp changes also occur near the boundary in the projection variance from LeakyReLU. As shown in Fig. 4(d), the covariance estimation for both activation functions is in agreement with the reference.
-202206/1001-8042-33-06-011/alternativeImage/1001-8042-33-06-011-F004.jpg)
The variance and covariance of the reconstructions obtained by FBP from projections denoised by U-net are presented in Fig. 5. For both phantoms and activation functions, the variance estimation of the reconstructions agrees with the reference because FBP is linear. Meanwhile, the error that propagates through the FBP is not a concern. We discover that the central areas of variance from the two activation functions have different appearances. The central area appears dark for LeakyReLU and bright for Swish in the same display window. The covariance estimation is yet again in agreement with the reference, leaving only statistical noise in the error map.
-202206/1001-8042-33-06-011/alternativeImage/1001-8042-33-06-011-F005.jpg)
The profiles of the variance and covariance for the projections and reconstructions are plotted in Fig. 6. For both phantoms and activation functions, the profiles of the variance and covariance estimations match those of the references. As shown in Fig. 6(a1)(c1), the profile of the projection variance from Swish appears smooth, whereas that from LeakyReLU appears sharp. The profile of covariance (as shown in Fig. 6(b1) and 6(d1)) from Swish demonstrates a larger spread, whereas that from LeakyReLU exhbits sharper changes. For the profiles of the reconstruction variance, displayed in Fig. 6(a2) and 6(c2), we discover that the noise from LeakyReLU is lower than that from Swish. The variance gradually decreases from the edge of the field of view (FOV) to its center for LeakyReLU, whereas it demonstrates an opposite behavior for Swish. Although the values of the projection covariance are close, the absolute value of the reconstruction covariance from LeakyReLU is much smaller than that from Swish; this demonstrates that the covariance from Swish is more structurally related and difficult to deal with.
-202206/1001-8042-33-06-011/alternativeImage/1001-8042-33-06-011-F006.jpg)
In addition, we estimate the variance of the projections obtained by U-net with LeakyReLU under different noise levels for test phantom B. As shown in Fig. 7, the variance estimation agrees with the reference for different noise levels. Although the error between the variance estimation and reference increases with the noise level, it is still insignificant compared with its corresponding variance.
-202206/1001-8042-33-06-011/alternativeImage/1001-8042-33-06-011-F007.jpg)
The noise estimation of U-net with LeakyReLU in the practical experiment is illustrated in Fig. 8. It is apparent that both the variance and covariance estimations from the analytical method agree well with the references, which strongly demonstrates the feasibility of the proposed analytical noise propagation method in practical usage.
-202206/1001-8042-33-06-011/alternativeImage/1001-8042-33-06-011-F008.jpg)
Performance Analysis with Analytical Covariance
Pixel-wise GE maps for test phantom B are illustrated in Fig. 9. For both activation functions, GE increases for each pixel with increasing noise levels, which indicates that U-net is inapplicable for highly noisy projections. When
-202206/1001-8042-33-06-011/alternativeImage/1001-8042-33-06-011-F009.jpg)
Further, noise reduction percentage (NRPs) are listed in Table 4. For both activation functions, the increase in NRP from
NRP (%) | Activation function | |||||
---|---|---|---|---|---|---|
Point ① | LeakyReLU | 64.78 | 84.99 | 88.87 | 93.82 | 95.04 |
Swish | 55.66 | 81.16 | 86.02 | 92.25 | 93.78 | |
Point ② | LeakyReLU | 63.93 | 84.61 | 88.59 | 93.67 | 94.93 |
Swish | 60.42 | 83.11 | 87.48 | 93.05 | 94.43 |
The NPS at the center of the reconstruction is illustrated in Fig. 10. For each noise level, the NPS at the center of the reconstruction from both activation functions decreases as
-202206/1001-8042-33-06-011/alternativeImage/1001-8042-33-06-011-F010.jpg)
Discussion and Conclusion
In this study, an analytical noise propagation method for CNNs in CT imaging is proposed. The five basic layers that comprise a typical CNN include the convolution, nonlinear activation, batch normalization, average pooling, and up-sampling layers. Except for the nonlinear activation layer, the other four layers are all linear, which simplifies the estimation of the covariance of their output by linear propagation. The 1st order Taylor expansion is used to obtain the linear approximation of the nonlinear activation layer for linear propagation of noise. By integrating the noise propagation of both linear and nonlinear layers in the CNN, we can estimate the covariance of reconstruction from the projection in a step-by-step manner.
The results indicate that the covariance estimated by the proposed analytical method agrees well with that estimated by the statistical method, regardless of phantoms, noise levels, and activation functions. We demonstrate that it is feasible to propagate noise from only a single projection to image reconstructed from CNN. The covariance of the projection obtained from U-net with the gradient continuous activation function Swish is smooth, whereas that with the discontinuous gradient activation function LeakyReLU exhibits sharp changes near the boundary. The noise in the reconstruction from LeakyReLU is smaller than that in Swish. They demonstrate opposite performances, where the variance from Swish gradually decreases from the FOV edge to its center. Therefore, LeakyReLU and Swish are completely different in terms of noise suppression. The covariance for Swish spreads wider than that for LeakyReLU, which indicates that Swish uses the information of more neighborhood pixels in denoising.
We further qualitatively and quantitatively evaluate network performance from three aspects. The GE, which contains bias and variance, is a tradeoff between the accuracy and noise of the network output and measures the generalization of the neural network. Trained with data under the condition of
In summary, the proposed analytical noise propagation method is capable of providing a reasonable pixel-wise noise property estimation from only a single sample, whereas other noise estimation methods cannot present comparable performance under the same conditions. Our proposed method can be applied to any inference-ready CNN with a fixed structure and weight for noise estimation. Because the convolution, batch normalization, average pooling, and up-sampling operations are all linear, and the nonlinear activation function is linearly approximated, the noise of the network input propagates linearly in the network. Evidently, the error in the noise estimation of the network output results from the linear approximation of the nonlinear activation function. Two activation functions, LeakyReLU and Swish, are validated in this study; hence, the proposed method is applicable to any network with these two activation functions, regardless of the network structure. Moreover, the noise property estimation of the network output can be used to evaluate the performance of the reconstruction methods. We can characterize noise features based on pixel-by-pixel noise estimation, which also enables us to analyze the spatial correlation and structural properties of noise. The experimental results reveal the significant value of this method in evaluating the output from CNN methods. In future studies, we aim to study the application of covariance estimation to a model observer for subjective image quality assessment. However, the computational cost is expected to increase with increasing network complexity and dimensions. Hence, efficient noise propagation methods for complex and high-dimensional networks must be studied.
A neural network-based method for spectral distortion correction in photon counting x-ray CT
. Phys. Med. Biol. 61(16), 6132-6153 (2016). doi: 10.1088/0031-9155/61/16/6132A model-based unsupervised deep learning method for low-dose CT reconstruction
. IEEE Access 8, 159260-159273 (2020). doi: 10.1109/ACCESS.2020.3020406CLEAR: comprehensive learning enabled adversarial reconstruction for subtle structure enhanced low-Dose CT imaging
. IEEE Trans. Med. Imaging 40(11), 3089-3101 (2021). doi: 10.1109/TMI.2021.3097808Slice-wise reconstruction for low-dose cone-beam CT using a deep residual convolutional neural network
. Nucl. Sci. Tech. 30, 59 (2019). doi: 10.1007/s41365-019-0581-7Domain progressive 3D residual convolution network to improve low-dose CT imaging
. IEEE Trans. Med. Imaging 38(12), 2903-2913 (2019). doi: 10.1109/TMI.2019.2917258Deep iterative reconstruction estimation (DIRE): approximate iterative reconstruction estimation for low dose CT imaging
. Phys. Med. Biol. 64(13), 135007 (2019). doi: 10.1088/1361-6560/ab18dbHybrid-domain neural network processing for sparse-view CT reconstruction
. IEEE Trans. Radiat. Plasma. Med. Sci. 5(1), 88-98 (2021). doi: 10.1109/TRPMS.2020.3011413DIOR: deep iterative optimization-based residual-learning for limited-angle CT reconstruction
. IEEE Trans. Med. Imaging (2022). doi: 10.1109/TMI.2022.3148110Sinogram denoising via attention residual dense convolutional neural network for low-dose computed tomography
. Nucl. Sci. Tech. 32, 41 (2021). doi: 10.1007/s41365-021-00874-2Iterative material decomposition for spectral CT using self-supervised Noise2Noise prior
. Phys. Med. Biol. 66(15), 1-17 (2021). doi: 10.1088/1361-6560/ac0afdEstimating dual-energy CT imaging from single-energy CT data with material decomposition convolutional neural network
. Med. Image Anal. 70, 102001 (2021). doi: 10.1016/j.media.2021.102001Interweaving network: a novel monochromatic image synthesis method for a photon-counting detector CT system
. IEEE Access 8, 217710 (2020). doi: 10.1109/ACCESS.2020.3041078Metal artifact reduction for practical dental computed tomography by improving interpolation-based reconstruction with deep learning
. Med. Phys. 46(12), e823-e834 (2019). doi: 10.1002/mp.13644Removing ring artefacts for photon-counting detectors using neural networks in different domains
. IEEE Access 8, 42447-42457 (2020). doi: 10.1109/ACCESS.2020.2977096Impact of deep learning-based optimization algorithm on image quality of low-dose coronary CT angiography with noise reduction: a prospective study
. Acad. Radiol. 27(9), 1241-1248 (2020). doi: 10.1016/j.acra.2019.11.010Influence of a novel deep-learning based reconstruction software on the objective and subjective image quality in low-dose abdominal computed tomography
. Br. J. Radiol. 94(1117), 1-9 (2020). doi: 10.1259/bjr.20200677CT iterative vs deep learning reconstruction: comparison of noise and sharpness
. Eur. Radiol. 31(5), 3156-3164 (2021). doi: 10.1007/s00330-020-07358-8Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study
. Eur. Radiol. 30(7), 3951-3959 (2020). doi: 10.1007/s00330-020-06724-wImage quality assessment of abdominal CT by use of new deep learning image reconstruction: initial experience
. AJR 215(1), 50-57 (2020). doi: 10.2214/ajr.19.22332Image quality and lesion detection on deep learning reconstruction and iterative reconstruction of submillisievert chest and abdominal CT
. AJR 214(3), 566-573 (2020). doi: 10.2214/AJR.19.21809Model observers in medical imaging research
. Theranostics 3(10), 774-786 (2013). doi: 10.7150/thno.5138Correlation between model observer and human observer performance in CT imaging when lesion location is uncertain
. Med. Phys. 40(8), 081908 (2013). doi: 10.1118/1.4812430Correlation between a 2D channelized Hotelling observer and human observers in a low-contrast detection task with multislice reading in CT
. Med. Phys. 44(8), 3990-3999 (2017). doi: 10.1002/mp.12380A convolutional neural network-based model observer for breast CT images
. Med. Phys. 47(4), 1619-1632 (2020). doi: 10.1002/mp.14072Deep learning to automate reference-free image quality assessment of whole-heart MR images
. Radiol. Artif. Intell. 2(3), e190123 (2020). doi: 10.1148/ryai.2020190123A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT
. Med. Phys. 46(5), 2052-2063 (2019). doi: 10.1002/mp.13500Deep-learning-based model observer for a lung nodule detection task in computed tomography
. J. Med. Imaging 7(4), 042807 (2020). doi: 10.1117/1.JMI.7.4.042807Deep-learning model observer for a low-contrast hepatic metastases localization task in computed tomography
. Med. Phys. 49(1), 70-83 (2021). doi: 10.1002/mp.15362Uncertainty propagation through deep neural networks
, in InterSpeech (2015). https://hal.inria.fr/hal-01162550Deep neural networks as Gaussian processes
, in the 6th International Conference on Learning Representations (ICRL 2018) (2018). arXiv:1711.00165Uncertainty modelling in deep learning for safer neuroimage enhancement: demonstration in diffusion MRI
. Neuroimage 225, 117366 (2021). doi: 10.1016/j.neuroimage.2020.117366Generalization error of ensemble estimators
, in Proceedings of International Conference on Neural Networks (ICNN’96), pp. 90-95 (1996). doi: 10.1109/ICNN.1996.548872