1.School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China
2.Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, V8W2Y2, Canada
3.Institute of plasma physics, Chinese academy of sciences, Hefei 230031, China
Corresponding author. E-mail address: jfang@bjtu.edu.cn
Scan for full text
Wei Zhou, Xin-Yu Fang, Jin Fang, et al. DC Performance and AC Loss of Cable-in-Conduit Conductors for International Thermonuclear Experimental Reactor. [J]. Nuclear Science and Techniques 27(3):74(2016)
Wei Zhou, Xin-Yu Fang, Jin Fang, et al. DC Performance and AC Loss of Cable-in-Conduit Conductors for International Thermonuclear Experimental Reactor. [J]. Nuclear Science and Techniques 27(3):74(2016) DOI: 10.1007/s41365-016-0061-2.
A reliable prediction of AC loss is essential for the application of International Thermonuclear Experimental Reactor (ITER) cable-in-conduit conductors (CICCs), however, the calculation of AC loss of ITER CICCs is a cumbersome task due to the complicated geometry of the multistage cables and the extreme operating conditions in ITER. In this paper, we described the models developed for hysteresis and coupling loss calculation, which can be suitable for the construction of ITER magnetic system. Meanwhile, we compared the results of theoretical analysis with the SULTAN test result to evaluate the numerical model we used. In addition, we introduced the ,n,-value and AC loss with transport current for CICCs based on the DC measurement results at SULTAN, which lays the foundation for the further study.
AC susceptibilitycoupling losshysteresis lossn-valueSULTAN test
Bean C P. Superconductors as Permanent Magnets. Phys Rev Lett, 1962, 33: 3334-3337. DOI: 10.1063/1.1931166http://doi.org/10.1063/1.1931166
Bean C P. Magnetization of High-Field Superconductors. Rev Mod Phys, 1964, 36: 31-34. DOI: 10.1103/RevModPhys.36.31http://doi.org/10.1103/RevModPhys.36.31
London H, Clarke G R. Superconductivity of Thin Films of Niobium. Rev Mod Phys, 1964, 36: 320-323. DOI: 10.1103/RevModPhys.36.320http://doi.org/10.1103/RevModPhys.36.320
Campbell A M. A general treatment of losses in multi-filamentary superconductors. Cryogenics, 1982, 22: 3-16. DOI: 10.1016/0011-2275(82)90015-7http://doi.org/10.1016/0011-2275(82)90015-7
Nijhuis A, Noordman N H W, Shevchenko O A, et al. Electromagnetic and Mechanical Characterization of ITER CS-MC Conductors Affected by Transverse Cyclic Loading, Part 1: Coupling Current Losses. IEEE Trans Appl Supercond, 1999, 9: 1069-1072. DOI: 10.1109/77.783482http://doi.org/10.1109/77.783482
Nijhuis A, Noordman N H W, Shevchenko O A, et al. Electromagnetic and Mechanical Characterization of ITER CS-MC Conductors Affected by Transverse Cyclic Loading, Part 2: Inter-strand Contact Resistances. IEEE Trans Appl Supercond, 1999, 9: 754-757. DOI: 10.1109/77.783404http://doi.org/10.1109/77.783404
Nijhuis A, Noordman N H W, Shevchenko O A, et al. Electromagnetic and Mechanical Characterization of ITER CS-MC Conductors Affected by Transverse Cyclic Loading, Part 3: Mechanical Properties. IEEE Trans Appl Supercond, 1999, 9: 165-168. DOI: 10.1109/77.783262http://doi.org/10.1109/77.783262
Zhou C, Lanen E P A, Veldhuis D, et al. Direct Measurement of Inter-Filament Resistance in Superconducting Multi-filamentary NbTi and Nb3Sn Strands. IEEE Trans Appl Supercond, 2011, 21: 2501-2504. DOI: 10.1109/TASC.2010.2083619http://doi.org/10.1109/TASC.2010.2083619
Nijhuis A, Ilyin Y, Abbas W, et al. Evolution of contact resistance and coupling loss in prototype ITER PF NbTi conductors under transverse cyclic load. IEEE Trans Appl Supercond, 2003, 13: 2388-2391. DOI: 10.1109/TASC.2003.813087http://doi.org/10.1109/TASC.2003.813087
Lelekhov S A, Tronza V I. AC Loss Before and After Cyclic Mechanical Loading in the ITER RF CICCs. IEEE Trans Appl Supercond, 2014, 24:4201005. DOI: 10.1109/TASC.2013.2285933http://doi.org/10.1109/TASC.2013.2285933
Qin C M, Zhang X J, Zhao Y P, et al. Electromagnetic Analysis of the EAST 4-Strap ICRF Antenna with HFSS Cod. Plasma Sci Technol, 2015, 17: 167-172. DOI: 10.1088/1009-0630/17/2/12http://doi.org/10.1088/1009-0630/17/2/12
Fukui S, Shibayama M, Ogawa. J, et al. Measurement and Numerical Analysis of AC Loss in High Temperature Superconducting Coil. IEEE Trans Appl Supercond, 2012, 22: 4704904. DOI: 10.1109/TASC.2011.2175684http://doi.org/10.1109/TASC.2011.2175684
Ma X B, Liu S L, Li J, et al. Preliminary Design of a Helium-Cooled Ceramic Breeder Blanket for CFETR Based on the BIT Concept. Plasma Sci Technol, 2014, 16: 390-395. DOI: 10.1088/1009-0630/16/4/16http://doi.org/10.1088/1009-0630/16/4/16
Song Y T, Wu S T, Wan Y X, et al. Concept design on RH maintenance of CFETR Tokamak reactor. Fusion Eng Des, 2014, 89: 2331-2335. DOI: 10.1016/j.fusengdes.2014.03.045http://doi.org/10.1016/j.fusengdes.2014.03.045
Zheng J X, Song Y T, Liu X F, et al. Concept design of the CFETR central solenoid. Fusion Eng Des, 2015, 91: 30-38. DOI: 10.1016/j.fusengdes.2014.12.018http://doi.org/10.1016/j.fusengdes.2014.12.018
Pardo E, Chen D-X, Sanchez A, et al. Alternating current loss in rectangular superconducting bars with a constant critical-current density. Supercond Sci Technol, 2004, 17: 83-87. DOI: 10.1088/0953-2048/17/1/014http://doi.org/10.1088/0953-2048/17/1/014
Chen D-X, Pardo E, Sanchez A. Transverse ac susceptibility of superconducting bars with elliptical cross-section and constant critical-current density. Supercond Sci Technol, 2005, 18: 997-1002. DOI: 10.1088/0953-2048/18/7/012http://doi.org/10.1088/0953-2048/18/7/012
Pardo E, Sanchez A, Navau C. Magnetic properties of arrays of superconducting strips in a perpendicular field. Phys Rev B, 2003, 67: 104517. DOI: 10.1103/PhysRevB.67.104517http://doi.org/10.1103/PhysRevB.67.104517
Mawatari. Y. Magnetic field distributions around superconducting strips on ferromagnetic substrates. Phys Rev B, 2008, 77: 104505. DOI: 10.1103/PhysRevB.77.104505http://doi.org/10.1103/PhysRevB.77.104505
Devred A, Backbier I, Bessette D, et al. Status of ITER conductor development and production. IEEE Trans Appl Supercond, 2012, 22: 4804909. DOI: 10.1109/TASC.2012.2182980http://doi.org/10.1109/TASC.2012.2182980
Bruzzone P. Test of ITER conductors in SULTAN: An update. Fusion Eng Des, 2011, 86: 1406-1049. DOI: 10.1016/j.fusengdes.2011.02.061http://doi.org/10.1016/j.fusengdes.2011.02.061
Fuchs A M, Blau B, Bruzzone P, et al. Facility status and results on ITER full-size conductor tests in SULTAN. IEEE Trans Appl Supercond, 2001, 11: 2022-2025. DOI: 10.1109/77.920251http://doi.org/10.1109/77.920251
Godeke A, Hakenet B. A general scaling relation for the critical current density in Nb3Sn. Supercond Sci Technol, 2006, 19: R100-R116. DOI: 10.1088/0953-2048/19/10/R02http://doi.org/10.1088/0953-2048/19/10/R02
Nijhuis A, Meerdervoort R P, Krooshoop H J G, et al. The effect of axial and transverse loading on the transport properties of ITER Nb3Sn strands. Supercond Sci Technol, 2013, 26: 084004. DOI: 10.1088/0953-2048/26/8/084004http://doi.org/10.1088/0953-2048/26/8/084004
Ilyin Y, Nijhuis A, Krooshoop E, et al. Scaling law for the strain dependence of the critical current in an advanced ITER Nb3Sn strand. Supercond Sci Technol, 2007, 20: 186-191. DOI: 10.1088/0953-2048/20/3/013http://doi.org/10.1088/0953-2048/20/3/013
Chen D-X. High-field ac susceptometer using Helmholtz coils as a magnetizer. Meas Sci Technol, 2004, 15: 1195-1202. DOI: 10.1088/0957-0233/15/6/021http://doi.org/10.1088/0957-0233/15/6/021
Wilson M N. Superconducting Magnets. London (UK): Oxford Science Publications, 1987, 44-50.
Liu B, Wu Y, Devred A, et al. Conductor Performance of TFCN4 and TFCN5 Samples for ITER TF Coils. IEEE Trans Appl Supercond, 2015, 25: 4201605. DOI: 10.1109/TASC.2014.2376931http://doi.org/10.1109/TASC.2014.2376931
Nijhuis A, Kate H H J, Duchateau J. L et al. Control of contact resistance by strand surface coating in 36-strand NbTi CICCs. Cryogenics, 2001, 41: 1-7. DOI: 10.1016/S0011-2275(01)00037-6http://doi.org/10.1016/S0011-2275(01)00037-6
Lu X F, Hampshire D P. The Magnetic Field, Temperature and Strain Dependence of the Critical Current of a Nb3Sn Strand Using a Six Free-Parameter Scaling Law. IEEE Trans Appl Supercond, 2009, 19: 2619-2623. DOI: 10.1109/TASC.2009.2018847http://doi.org/10.1109/TASC.2009.2018847
Taylor D M J, Keys S A, Hampshire D P, et al. E-J characteristics and n-values of a niobium-tin superconducting wire as a function of magnetic field, temperature and strain. Physica C, 2002, 372: 1291-1294. DOI: 10.1016/S0921-4534(02)01012-2http://doi.org/10.1016/S0921-4534(02)01012-2
Lu X F, Taylor D M J, Hampshire D P, et al. Critical current scaling laws for advanced Nb3Sn superconducting strands for fusion applications with six free parameters. Supercond Sci Technol, 2008, 21: 105016. DOI: 10.1088/0953-2048/21/10/105016http://doi.org/10.1088/0953-2048/21/10/105016
Bruzzone P. The index n of the voltage-current curve in the characterization and specification of technical superconductors. Physica C, 2004, 401: 7-14. DOI: 10.1016/j.physc.2003.09.005http://doi.org/10.1016/j.physc.2003.09.005
0
Views
0
Downloads
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution