1.Division of Physical Biology and CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.University of Chinese Academy of Science,Beijing100049, China
3.Shanghai Center for Bioinformation Technology, Shanghai Academy of Science &Technology; Center for Clinical and translational medicine, Shanghai Industrial Technology Institute, Shanghai 201203, China
Correspondence address: lujunhong@sinap.ac.cn
Scan for full text
Xiao-Juan Hu, Zhi-Xiao Liu, Ya-Di Wang, et al. Synchrotron FTIR spectroscopy reveals molecular changes of
Xiao-Juan Hu, Zhi-Xiao Liu, Ya-Di Wang, et al. Synchrotron FTIR spectroscopy reveals molecular changes of
Copper ions (e.g. Cu,2+,) have outstanding antibacterial properties, but the exact mechanism is rather complex and not fully understood. In this work, synchrotron Fourier transform infrared (FTIR) spectroscopy was used as an analytical tool to investigate the CuCl,2,-induced biochemical changes in ,Escherichia coli,. Our spectral measurements indicated that this technique issensitive enough to detect changes in membrane lipids,nucleic acids, peptidoglycans and proteins of Cu,2+,-treated bacteria. Interestingly, for short-timetreated cells, the effects on phospholipids composition were clearly shown while no significant alterationsof proteins, nucleic acids and peptidoglycans were found. Quantitative Nano-Mechanics (PF-QNM) mode atomic force microscopy (AFM) confirmedthe changes of the topography and mechanical properties of bacteria upon the Cu,2+, exposure. This study demonstrated that FTIRspectroscopy combined with AFM can provide more comprehensive evaluation on the biochemical and mechanicalresponses of bacteria to copper.
copper ionsAntibacterial effectEscherichia coliSynchrotronFTIRspectroscopyAtomic force microscopy
J. O'Gorman, H. Humphreys. Application of copper to prevent and control infection. Where are we now? J Hosp Infect, 2012, 81: 217-223. DOI: 10.1016/j.jhin.2012.05.009http://doi.org/10.1016/j.jhin.2012.05.009
L. Nan, W. C. Yang, Y. Q. Liu, et al. Antibacterial mechanism of copper-bearing antibacterial stainless steel against E. coli. J Mater Sci Technol, 2008, 24: 197-201.
S. L. Warnes, V. Caves, C. W. Keevil. Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria. Environ Microbio, 2012, 14: 1730-1743. DOI: 10.1111/j.1462-2920.2011.02677.xhttp://doi.org/10.1111/j.1462-2920.2011.02677.x
T. P. Dasari, K. Pathakoti, H.-M. Hwang. Determination of the mechanism of photoinduced toxicity of selected metal oxide nanoparticles (ZnO, CuO, Co3O4 and TiO2) to E. coli bacteria. J Environ Sci-China, 2013, 25: 882-888. DOI: 10.1016/s1001-0742(12)60152-1http://doi.org/10.1016/s1001-0742(12)60152-1
C. Espirito Santo, E. W. Lam, C. G. Elowsky, et al. Bacterial killing by dry metallic copper surfaces. Appl Environ Microbiol, 2011, 77: 794-802. DOI: 10.1128/aem.01599-10http://doi.org/10.1128/aem.01599-10
S. L. Warnes, S. M. Green, H. T. Michels, et al. Biocidal Efficacy of Copper Alloys against Pathogenic Enterococci Involves Degradation of Genomic and Plasmid DNAs. Appl Environ Microbiol, 2010, 76: 5390-5401. DOI: 10.1128/aem.03050-09http://doi.org/10.1128/aem.03050-09
S. L. Warnes, C. W. Keevil. Mechanism of Copper Surface Toxicity in Vancomycin-Resistant Enterococci following Wet or Dry Surface Contact. Appl Environ Microbiol, 2011, 77: 6049-6059. DOI: 10.1128/aem.00597-11http://doi.org/10.1128/aem.00597-11
R. N. N. Abskharon, S. H. A. Hassan, M. H. Kabir, et al. The role of antioxidants enzymes of E. coli ASU3, a tolerant strain to heavy metals toxicity, in combating oxidative stress of copper. World J Microbiol Biotechnol, 2010, 26: 241-247. DOI: 10.1007/s11274-009-0166-4http://doi.org/10.1007/s11274-009-0166-4
L. Macomber, J. A. Imlay. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Nat Acad Sci U S A, 2009, 106: 8344-8349. DOI: 10.1073/pnas.0812808106http://doi.org/10.1073/pnas.0812808106
D. Quaranta, T. Krans, C. E. Santo, et al. Mechanisms of Contact-Mediated Killing of Yeast Cells on Dry Metallic Copper Surfaces. Appl Environ Microbiol, 2011, 77: 416-426. DOI: 10.1128/aem.01704-10http://doi.org/10.1128/aem.01704-10
C. E. Santo, D. Quaranta, G. Grass. Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. Microbiologyopen, 2012, 1: 46-52. DOI: 10.1002/mbo3.2http://doi.org/10.1002/mbo3.2
R. Hong, T. Y. Kang, C. A. Michels, et al. Membrane Lipid Peroxidation in Copper Alloy-Mediated Contact Killing of Escherichia coli. Appl Environ Microbiol, 2012, 78: 1776-1784. DOI: 10.1128/aem.07068-11http://doi.org/10.1128/aem.07068-11
S. I. Volentini, R. N. Farias, L. Rodriguez-Montelongo, et al. Cu(II)-reduction by Escherichia coli cells is dependent on respiratory chain components. Biometals, 2011, 24: 827-835. DOI: 10.1007/s10534-011-9436-3http://doi.org/10.1007/s10534-011-9436-3
S. Ling, Z. Qi, D. Knight, et al. Synchrotron FTIR Microspectroscopy of Single Natural Silk Fibers. Biomacromolecules, 2011,12: 3344-3349. DOI: 10.1021/bm2006032http://doi.org/10.1021/bm2006032
A. Alvarez-Ordonez, D. J. M. Mouwen, M. Lopez, et al. Fourier transform infrared spectroscopy as a tool to characterize molecular composition and stress response in foodborne pathogenic bacteria. J Microbiol Methods, 2011, 84: 369-378. DOI: 10.1016/j.mimet.2011.01.009http://doi.org/10.1016/j.mimet.2011.01.009
S. J. Parikh, J. Chorover. ATR-FTIR Spectroscopy Reveals Bond Formation During Bacterial Adhesion to Iron Oxide. Langmuir, 2006, 22: 8492-8500. DOI: 10.1021/la061359phttp://doi.org/10.1021/la061359p
J. Kiwi, V. Nadtochenko. Evidence for the Mechanism of Photocatalytic Degradation of the Bacterial Wall Membrane at the TiO2 Interface by ATR-FTIR and Laser Kinetic Spectroscopy. Langmuir, 2005, 21: 4631-4641. DOI: 10.1021/la046983lhttp://doi.org/10.1021/la046983l
T. Jan, J. Iqbal, M. Ismail, et al. Eradication of Multi-drug Resistant Bacteria by Ni Doped ZnO Nanorods: Structural, Raman and optical characteristics. Appl Surf Sci, 2014, 308: 75-81.DOI: 10.1016/j.apsusc.2014.04.100http://doi.org/10.1016/j.apsusc.2014.04.100
C. Saulou, F. Jamme, L. Girbal, et al. Synchrotron FTIR microspectroscopy of Escherichia coli at single-cell scale under silver-induced stress conditions. Anal Bioanal Chem, 2013, 405: 2685-2697. DOI: 10.1007/s00216-013-6725-4http://doi.org/10.1007/s00216-013-6725-4
B. Zhao, Y. Song, S. Wang, et al. Mechanical mapping of nanobubbles by PeakForce atomic force microscopy. Soft Matter, 2013, 9: 8837-8843. DOI: 10.1039/c3sm50942ghttp://doi.org/10.1039/c3sm50942g
D. Alsteens, H. Trabelsi, P. Soumillion, et al. Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria. Nat Commun, 2013, 4: 2926. DOI: 10.1038/ncomms3926http://doi.org/10.1038/ncomms3926
V. Vadillo-Rodrigues, H. J. Busscher, W. Norde, et al. Comparision of atomic force microscopy interaction forces between bacteria and silicon nitride substrata for three commonly used immobilization methods. Appl Environ Microbiol, 2004, 70: 5441-5446. DOI: 10.1128/aem.70.9.5441-5446.2004http://doi.org/10.1128/aem.70.9.5441-5446.2004
S. Kaminskyj, K. Jilkine, A. Szeghalmi, et al. High spatial resolution analysis of fungal cell biochemistry--bridging the analytical gap using synchrotron FTIR spectromicroscopy. Fems Microbiol Lett, 2008, 284: 1-8. DOI: 10.1111/j.1574-6968.2008.01162.xhttp://doi.org/10.1111/j.1574-6968.2008.01162.x
G. Cakmak, I. Togan, F. Severcan. 17 beta-estradiol induced compositional, structural and functional changes in rainbow trout liver, revealed by FT-IR spectroscopy: A comparative study with nonylphenol. Aquat Toxicol, 2006, 77: 53-63. DOI: 10.1016/j.aquatox.2005.10.015http://doi.org/10.1016/j.aquatox.2005.10.015
A. A. Kamnev. FTIR spectroscopic studies of bacterial cellular responses to environmental factors, plant-bacterial interactions and signalling. Spectrosc-Int J, 2008, 22: 83-95. DOI: 10.3233/spe-2008-0329http://doi.org/10.3233/spe-2008-0329
M. Jackson, B. Ramjiawan, M. Hewko, et al. Infrared microscopic functional group mapping and spectral clustering analysis of hypercholesterolemic rabbit liver. Cell Mol Biol, 1998, 44: 89-98.
D. Naumann. FT-infrared and FT-Raman spectroscopy in biomedical research. Appl Spectrosc Rev, 2001, 24: 323-377.DOI: 10.1081/ASR-100106157http://doi.org/10.1081/ASR-100106157
M. Kardas, A. G. Gozen, F. Severcan. FTIR spectroscopy offers hints towards widespread molecular changes in cobalt-acclimated freshwater bacteria. Aquat Toxicol, 2014, 155: 15-23. DOI: 10.1016/j.aquatox.2014.05.027http://doi.org/10.1016/j.aquatox.2014.05.027
P. I. Haris, F. Severcan. FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J Mol Catal B-Enzym, 1999, 7: 207-221. DOI: 10.1016/s1381-1177(99)00030-2http://doi.org/10.1016/s1381-1177(99)00030-2
N. S. Ozek, I. B. Bal, Y. Sara, et al. Structural and functional characterization of simvastatin-induced myotoxicity in different skeletal muscles. Biochim Biophys Acta-Gen Subj, 2014, 1840: 406-415. DOI: 10.1016/j.bbagen.2013.09.010http://doi.org/10.1016/j.bbagen.2013.09.010
J. Kong, S. Yu. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin, 2007, 39: 549-559. DOI: 10.1111/j.1745-7270.2007.00320.xhttp://doi.org/10.1111/j.1745-7270.2007.00320.x
A. M. Dwivedi, S. Krimm. Vibrational analysis of peptides, polypeptides, and proteins.18. conformational sensitivity of the alpha-helix spectrum-alpha-I-poly (L-alanine) and alpha-II-poly (L-alanine). Biopolymers, 1984, 23: 923-943. DOI: 10.1002/bip.360230509http://doi.org/10.1002/bip.360230509
S. J. Ling, Z. M. Qi, D. P. Knight, et al. Insight into the Structure of Single Antheraea pernyi Silkworm Fibers Using Synchrotron FTIR Microspectroscopy. Biomacromolecules, 2013, 14: 1885-1892. DOI: 10.1021/bm400267mhttp://doi.org/10.1021/bm400267m
P. Heraud, E. S. Ng, S. Caine, et al. Fourier transform infrared microspectroscopy identifies early lineage commitment in differentiating human embryonic stem cells. Stem Cell Res, 2010, 4: 140-147. DOI: 10.1016/j.scr.2009.11.002http://doi.org/10.1016/j.scr.2009.11.002
K. Maquelin, C. Kirschner, L. P. Choo-Smith, et al. Identification of medically relevant microorganisms by vibrational spectroscopy. J Microbiol Methods, 2002, 51: 255-271. DOI: 10.1016/s0167-7012(02)00127-6http://doi.org/10.1016/s0167-7012(02)00127-6
M. Banyay, M. Sarkar, A. Graslund. A library of IR bands of nucleic acids in solution. Biophys Chem, 2003, 104: 477-488. DOI: 10.1016/s0301-4622(03)00035-8http://doi.org/10.1016/s0301-4622(03)00035-8
F. Quiles, F. Humbert, A. Delille. Analysis of changes in attenuated total reflection FTIR fingerprints of Pseudomonas fluorescens from planktonic state to nascent biofilm state. Spectrochim Acta Part a, 2010, 75: 610-616. DOI: 10.1016/j.saa.2009.11.026http://doi.org/10.1016/j.saa.2009.11.026
B. D. Hoyle, T. J. Beveridge. Metal-binding by the peptidoglycan sacculus of Escherichia coli K-12. Can J Microbiol, 1984, 30: 204-211. DOI: 10.1139/m84-031http://doi.org/10.1139/m84-031
W. Bai, K. Zhao, K. Asami. Effects of copper on dielectric properties of E. coli cells. Colloids Surf B, 2007, 58: 105-115. DOI: 10.1016/j.colsurfb.2007.02.015http://doi.org/10.1016/j.colsurfb.2007.02.015
R. Nandakumar, C. E. Santo, N. Madayiputhiya, et al. Quantitative proteomic profiling of the Escherichia coli response to metallic copper surfaces. Biometals, 2011, 24: 429-444. DOI: 10.1007/s10534-011-9434-5http://doi.org/10.1007/s10534-011-9434-5
A. E. Pelling, Y. N. Li, W. Y. Shi, et al. Nanoscale visualization and characterization of Myxococcus xanthus cells with atomic force microscopy. Proc Nat Acad Sci U S A, 2005, 102: 6484-6489. DOI: 10.1073/pnas.0501207102http://doi.org/10.1073/pnas.0501207102
0
Views
0
Downloads
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution