1.Radionuclide Diagnostics Department, Medical Radiological Research Centre, Korolyev St. 4, Obninsk 249036, Russia.
2.Department of Medicine, University of Illinois, College of Medicine at Chicago, COMRB 1160-1168, Chicago, IL 60612, USA.
Corresponding author: E-mail address: vezai@obninsk.com
Scan for full text
Zaichick Vladimir, Zaichick Sofia, Davydov German. Method and portable facility for measurement of trace element concentration in prostate fluid samples using radionuclide-induced energy-dispersive X-ray fluorescent analysis. [J]. Nuclear Science and Techniques 27(6):136(2016)
Zaichick Vladimir, Zaichick Sofia, Davydov German. Method and portable facility for measurement of trace element concentration in prostate fluid samples using radionuclide-induced energy-dispersive X-ray fluorescent analysis. [J]. Nuclear Science and Techniques 27(6):136(2016) DOI: 10.1007/s41365-016-0133-3.
A facility and method for ,109,Cd radionuclide-induced energy dispersive X-ray fluorescent (EDXRF) were developed to determine the Fe, Zn, Br, Rb, and Sr concentrations in the specimens of human prostatic fluid. Specimens of expressed prostatic fluid were obtained from 51 men (mean age 51 years, range 18-82 years) with apparently normal prostates using standard rectal massage procedure. Mean values (M ± SΕΜ) for concentration of trace elements (mg·L,-1,) in human prostate fluid were: Fe 9.04±1.21, Zn 573±35, Br 3.58±0.59, Rb 1.10±0.08, and Sr ≤0.76. It was shown that the results of trace element analysis in the micro samples (20 μL) are sufficiently representative for assessment of the Fe, Zn, Br, and Rb concentration in the prostate fluid. The facility for ,109,Cd radionuclide-induced EDXRF is comparatively compact and can be located in close proximity to the site of carrying out the massage procedure. The means of Zn and Rb concentration obtained for prostate fluid agree well with median of reported means. For the first time the Fe and Br concentrations, as well as the upper limit of the Sr concentration were determined in the human prostate fluid.
Radionuclide-induced energy-dispersive X-ray fluorescent analysisTrace elementsHuman prostateProstate fluid109Cd.
A.R. Mackenzie, T. Hall, JrW.F. Whitmore. Zinc content of expressed human prostate fluid. Nature (London) 193(4810), 72-73 (1962).
J.L. Marmar, S. Katz, D.E. Praiss, T.J. DeBenedictis. Values for zinc in whole semen, fraction of split ejaculate and expressed prostatic fluid. Urology 16(5), 478-480 (1980) doi: 10.1016/0090-4295(80)90599-3http://doi.org/10.1016/0090-4295(80)90599-3
V. Zaichick, T. Sviridova, S. Zaichick. Zinc concentration in human prostatic fluid: normal, chronic prostatitis, adenoma, and cancer. Int. Urol. Nephrol. 28(5), 687-694 (1996) http://www.ncbi.nlm.nih.gov/pubmed/9061429http://www.ncbi.nlm.nih.gov/pubmed/9061429
V. Zaichick, A. Tsyb, V.N. Dunchik, T.V. Sviridova. Method for diagnostics of prostate diseases. Certificate of invention No 997281 (30.03.1981).
V. Zaichick, A. Tsyb. In vitro and in vivo radiation techniques of the element analysis for cancer diagnostics. In: International Congress of Radiation Oncology - ICRO’93 (21-25 June 1993). Kyoto, Japan, p. 410 (1993).
V. Zaichick, A. Tsyb. Nuclear methods of chemical element analysis in body tissues and fluids for cancer diagnostics. Eur. J. Nucl. Med. 23(9), 1220 (1996).
L.C. Costello, R.B. Franklin. Prostatic fluid electrolyte composition for the screening of prostate cancer: a potential solution to a major problem. Prostate Cancer Prostate Dis. 12(1), 17-24 (2009). doi: 10.1038/pcan.2008.19http://doi.org/10.1038/pcan.2008.19.
Z. Medarova, S.K. Ghosh, M. Vangel et al. Risk stratification of prostate cancer patients based on EPS-urine zinc content. Am. J. Cancer. Res. 4(4), 385-393, (2014). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106656/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106656/
Y. Gómez, F. Arocha, F. Espinoza et al. Zinc levels in prostatic fluid of patients with prostate pathologies. Invest. Clin. 48(3), 287-294 (2007)
K. Lin, R. Lipsitz, T. Miller et al. Benefits and harms of prostate-specific antigen screening for prostate cancer: an evidence update for the U.S. Preventive Services Task Force. Ann. Intern. Med. 149(3), 192-199 (2008). doi: 10.7326/0003-4819-149-3-200808050-00009http://doi.org/10.7326/0003-4819-149-3-200808050-00009
V. Zaichick V. Iodine and some other trace elements of the thyroid gland: Standard and Disease. In: Nuclear Analytical Methods in the Life Sciences (13-17 Sept 1993). Prague, 32-33 (1993).
V. Zaichick. Instrumental activation and X-ray fluorescent analysis of human bones in health and disease. J. Radioanal. Nucl. Chem. 179(2), 295-303 (1994).
V. Zaichick, A. Tsyb, B.M. Vtyurin. Trace elements and thyroid cancer. Analyst 120, 817-821 (1995) http://www.ncbi.nlm.nih.gov/pubmed/7741233http://www.ncbi.nlm.nih.gov/pubmed/7741233
S. Zaichick, V. Zaichick. Trace elements of normal, benign hypertrophic and cancerous tissues of the human prostate gland investigated by neutron activation analysis. Appl. Radiat. Isot. 70, 81-87 (2012). doi: 10.1016/j.apradiso.2011.08.021http://doi.org/10.1016/j.apradiso.2011.08.021
S. Zaichick, V. Zaichick. Neutron activation analysis of Ca, Cl, Mg, Na, and P content in human bone affected by osteomyelitis or osteogenic sarcoma. J. Radioanal. Nucl. Chem. 293(1), 241-246 (2012).
S. Zaichick, V. Zaichick. EDXRF determination of trace element contents in cancerous tissues of human prostate. In: Fundamental Interactions and Neutrons, Neutron Spectroscopy, Nuclear Structure, Related Topics. Join Institute Nuclear Research, Dubna, 303-309 (2013).
V. Zaichick, S. Zaichick. The Ca, Cl, Mg, Na, and P mass fractions in human bone affected by Ewing’s sarcoma. Biol. Trace Elem. Res. 159(1-3), 32-38 (2014). doi: 10.1007/s12011-014-9966-yhttp://doi.org/10.1007/s12011-014-9966-y
V. Zaichick, S. Zaichick, G. Davydov, T. Epatova. The Ca, Cl, Mg, Na, and P mass fractions in benign and malignant giant cell tumors of bone investigated by neutron activation analysis. J. Radioanal. Nucl. Chem. 304(3), 1313-1320 (2015).
V. Zaichick, S. Zaichick. The silver, cobalt, chromium, iron, mercury, rubidium, antimony, selenium and zinc contents in human bone affected by Ewing's sarcoma. Journal of Cancer and Tumor International 2(1), 21-31 (2015). doi: 10.9734/JCTI/2015/17464http://doi.org/10.9734/JCTI/2015/17464
S. Zaichick, V. Zaichick. The content of silver, cobalt, chromium, iron, mercury, rubidium, antimony, selenium, and zinc in osteogenic sarcoma. Journal of Cancer Therapy 6(6),493-503 (2015). doi: 10.4236/jct.2015.66053http://doi.org/10.4236/jct.2015.66053
V. Zaichick, S. Zaichick. The silver, cobalt, chromium, iron, mercury, rubidium, antimony, selenium, and zinc contents in human bone affected by chondrosarcoma. Journal of Hematology and Oncology Research 1(4), 25-36 (2015). doi: 10.14302/issn.2372-6601.jhor-15-666http://doi.org/10.14302/issn.2372-6601.jhor-15-666
V. Zaichick, S. Zaichick. Trace element contents in adenocarcinoma of human prostate investigated by energy dispersive X-ray fluorescent analysis. Journal of Adenocarcinoma 1(1), 1-7 (2016). http://adenocarcinoma.imedpub.com/trace-element-contents-in-adenocarcinomaof-human-prostate-investigated-by-energydispersive-xray-fluorescent-analysis.pdfhttp://adenocarcinoma.imedpub.com/trace-element-contents-in-adenocarcinomaof-human-prostate-investigated-by-energydispersive-xray-fluorescent-analysis.pdf
V. Zaichick. Applications of synthetic reference materials in the medical Radiological Research Centre. Fresenius J. Anal. Chem 352, 219-223 (1995). http://link.springer.com/article/10.1007%2FBF00322330#http://link.springer.com/article/10.1007%2FBF00322330#
R.I. Plotnikov, G.A. Pshenichny. Fluorescent X-ray radiometric analysis, Atomizdat, Moscow (1973).
V.P. Afonin, N.I. Komyak, V.P. Nikolaev, R.I. Plotnikov. X-ray fluorescent analysis, Nauka, Novosibirsk (1991).
R.A. Moore, M.L. Miller, A. Mc Lellan. The chemical composition of prostatic secretion in relation to benign hypertrophy of the prostate. J. Urol. 46, 132-137 (1941).
C. Huggins, W.W. Scott, J.H. Heinen. Chemical composition of human semen and of the secretion of the prostate and seminal vesicles. Amer. J. Physiol. 136(3), 467-473 (1942).
Z.T. Homonnai, H. Matzkin, N. Fainman, G. Paz, P.F. Kraicer. The cation composition of the seminal plasma and prostatic fluid and its correlation to semen quality. Fertil. Steril. 29(5), 539-542 (1978). http://europepmc.org/abstract/med/27390http://europepmc.org/abstract/med/27390
J.P. Kavanagh, C. Darby. The interrelationships between acid phosphatase, aminopeptidase, diamine oxidase, citric acid, β-glucuronidase, pH and zinc in human prostate fluid. Int. J. Androl. 5(5), 503-512 (1982). doi: 10.1111/j.1365-2605.1982.tb00282.xhttp://doi.org/10.1111/j.1365-2605.1982.tb00282.x
J.P. Kavanagh. Sodium, potassium, calcium, magnesium, zinc, citrate and chloride content of human prostatic and seminal fluido. J. Reprod. Fertil. 75(1), 35-41 (1985). http://www.ncbi.nlm.nih.gov/pubmed/4032375http://www.ncbi.nlm.nih.gov/pubmed/4032375
I. Romics, D. Bach. Zn, Ca and Na levels in the prostatic secretion of patients with prostatic adenoma. Int. Urol. Nephrol. 23(1), 45-49 (1991). doi: 10.1007/BF02549727http://doi.org/10.1007/BF02549727
Z.-N. Mo, W.-H. Huang, J. Chen et al. Early and late long-term effects of vasectomy on Zn, Cd, and Cu levels in prostatic fluid and serum. Asian J. Androl. 2, 121-124 (2000). http://www.ncbi.nlm.nih.gov/pubmed/7500459http://www.ncbi.nlm.nih.gov/pubmed/7500459
O.S. Marenkov, N.I. Komyak, Photon coefficients of interactions for X-ray radiometric analysis, Energoatomizdat, Leningrad (1988).
M.H. Burgos. Biochemical and functional properties related to sperm metabolism and fertility. In: Male accessory sex organs (Ed.: Brandes D.) Academic press, New York, 151-160 (1974).
Y. Gómes, F. Arocha, F. Espinoza et al. Niveles de zinc en líquido prostático de pacientes con patologías de próstata. Invest. Clin. 48(3), 287-294 (2007). http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S0535-51332007000300003http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S0535-51332007000300003
A. Leonov, V. Zaichick. A choice of optimum geometric parameters for the source-sample-detector system using X-ray fluorescent analysis with Si(Li) detector and 109Cd. Voprosy atomnoy nauki i tekhniki. Series: Joint and Nuclear Physics (Kharkov) 2(8), 70-73 (1979).
X. Fuentes-Arderiu, C.G. Fraser. Analytical goals for the interference. Ann. Clin. Biochem. 28, 393-395 (1991). http://acb.sagepub.com/content/28/4/393.abstracthttp://acb.sagepub.com/content/28/4/393.abstract
C.G. Fraser. Biological variation: from principles to practice, AACC Press (2001). https://www.amazon.com/Biological-Variation-Principles-Callum-Fraser/dp/1890883492https://www.amazon.com/Biological-Variation-Principles-Callum-Fraser/dp/1890883492
V. Zaichick. Medical elementology as a new scientific discipline. J. Radioanal. Nucl. Chem. 269, 303-309 (2006). doi: 10.1007/s10967-006-0383-3http://doi.org/10.1007/s10967-006-0383-3
V. Zaichick. Sampling, sample storage and preparation of biomaterials for INAA in clinical medicine, occupational and environmental health. In: Harmonization of Health-Related Environmental Measurements Using Nuclear and Isotopic Techniques. International Atomic Energy Agency, Vienna 123-133 (1997). https://inis.iaea.org/search/search.aspx?orig_q=RN:29019688https://inis.iaea.org/search/search.aspx?orig_q=RN:29019688
V. Zaichick. Losses of chemical elements in biological samples under the dry ashing process. Trace Elements in Medicine 5(3), 17-22 (2004). http://journal.microelements.ru/microelements_of_midicine/2004_3/17-22.pdfhttp://journal.microelements.ru/microelements_of_midicine/2004_3/17-22.pdf
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution