1.State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
2.National Institute of Metrology, 18 North Third Ring East Rd., Beijing 100029 China
Corresponding author:skz@ustc.edu.cn
Scan for full text
Zheng Tu, Ke-Zhu Song, Ming Zhang, et al. A new digital pulse processing method for 2πα and 2πβ emitter measurement. [J]. Nuclear Science and Techniques 27(6):138(2016)
Zheng Tu, Ke-Zhu Song, Ming Zhang, et al. A new digital pulse processing method for 2πα and 2πβ emitter measurement. [J]. Nuclear Science and Techniques 27(6):138(2016) DOI: 10.1007/s41365-016-0137-z.
Digital pulse processing has developed rapidly during recent years. Moreover, it has been widely applied in many fields. In this study, we introduce a digital pulse processing method for 2πα and 2πβ emitter measurement. Our digital pulse processing method for 2πα and 2πβ emitter measurement is comprised of a field programmable gate array (FPGA) based acquisition card and a pulse height analysis routine. We established 2 channels (one for the α emitter and one for the β emitter) on an acquisition board using an analog to digital converter (ADC) with a 16-bit resolution at a speed of 100 million samples per second (MSPS). In this study, we used captured and stored data to analyze emission rate counts and spectrums. The method we established takes into account noise cancelation, dead time correction, background subtraction, and zero-energy extrapolation. We carefully designed control procedures in order to simplify pulse width fitting and threshold level setting. We transmitted data and commands through a universal serial bus (USB) between the acquisition board and the computer. The results of our tests prove that our method performs well in pulse reconstruction fidelity and amplitude measurement accuracy. Compared to the current standard method for measuring 2πα and 2πβ emission rates, our system demonstrates excellent precision in emission rate counting.
Digital pulse processingα and β Emitter MeasurementFPGA
A. Pullia, G. Gritti, G. Ripamonti. Design of high performance digital baseline restorers. IEEE T Nucl Sci, 1997, 44(3): 331-337. DOI: 10.1109/23.603665http://doi.org/10.1109/23.603665
V.T. Jordanov. Real time digital pulse shaper with variable weighting function. Nucl Instrum Meth A, 2003, 505(1-2): 347-351. DOI: 10.1016/S0168-9002(03)01094-5http://doi.org/10.1016/S0168-9002(03)01094-5
H.Q. Zhang, L.Q. Ge, B. Tang, et al. Optimal choice of trapezoidal shaping parameters in digital nuclear spectrometer system. Nucl. Sci. Tech. 2013, 6:109-114. DOI: 10.13538/j.1001-8042/nst.2013.06.011http://doi.org/10.13538/j.1001-8042/nst.2013.06.011
R. Grzywacz. Applications of digital pulse processing in nuclear spectroscopy. Nucl Instrum Methods, 2003, 204(1): 649-659. DOI: 10.1016/S0168-583X(02)02146-8http://doi.org/10.1016/S0168-583X(02)02146-8
P.L. Reeder, A.J. Peurrung, R.R. Hansen, et al. Detection of fast neutrons in a plastic scintillator using digital pulse processing to reject gammas. Nucl Instrum Meth A, 1999, 422(1-3): 84-88. DOI: 10.1016/S0168-9002(98)01068-7http://doi.org/10.1016/S0168-9002(98)01068-7
R. de la Fuente, B. de Celis, V. del Canto, et al. Low level radioactivity measurements with phoswich detectors using coincident techniques and digital pulse processing analysis. J Environ Radioactiv, 2008, 99(10): 1553-1557. DOI: 10.1016/j.jenvrad.2007.12.008http://doi.org/10.1016/j.jenvrad.2007.12.008
W.K. Warburton, M. Momayezi, B. Hubbard-Nelson, et al. Digital pulse processing: new possibilities in nuclear spectroscopy. Appl Radiat Isot, 2000, 53(4-5): 913-920. DOI: 10.1016/S0969-8043(00)00247-5http://doi.org/10.1016/S0969-8043(00)00247-5
J.C. Liang, Q. Li, J.C. Liu, et al. The Absolute Measurement for 2πα and 2πβ Particle Emission Rate. Acta Metrologica Sinica, 2016, 37(2): 1-5. DOI: 10.3969/j.issn.1000-1158.2016.00.00http://doi.org/10.3969/j.issn.1000-1158.2016.00.00
J.L. Wuu, M.C. Yuan, S.H. Su, et al. The alpha and beta emitter measurement system in INER. Appl Radiat Isot, 2002, 56: 261-264. DOI: 10.1016/S0969-8043(01)00197-Xhttp://doi.org/10.1016/S0969-8043(01)00197-X
L.E. King, J.M.R. Hutchinson, M.P. Unterweger. A new large-area 2π proportional counting system at NIST. Appl Radiat Isot, 2008, 66: 877-880. DOI: 10.1016/j.apradiso.2008.02.079http://doi.org/10.1016/j.apradiso.2008.02.079
J.M.R. Hutchinson, S.J. Bright. The NBS large-area alpha-particle counting system. J Res NBS, 1987, 92(5): 311. DOI: 10.6028/jres.092.031http://doi.org/10.6028/jres.092.031
J.C. Mostert. A primary standard for the measurement of alpha and beta particle surface emission rate at the National Metrology Institute of South Africa. Appl Radiat Isot, 2008, 66(6-7). DOI: 10.1016/j.apradiso.2008.02.059http://doi.org/10.1016/j.apradiso.2008.02.059
J.J. Wang. Nuclear Electronics Volumne 2. Beijing(China): Atomic Energy Press, 1983, 1-17. (in Chinese)
Y.S. Dai, L.K. Dong, Z.X. Sun, et al. Design of parallel port turn USB port data acquisition system based on CY7C68013A. Electron Des Eng, 2011, 19(16): 42-44 DOI: 10.14022/j.cnki.dzsjgc.2011.16.046http://doi.org/10.14022/j.cnki.dzsjgc.2011.16.046
J.F. Chen, K.Z. Song, J.C. Liang. Dedicated 4πβ (LS)-γ (HPGe) Digital Coincidence System Based on Synchronous High-Speed Multichannel Data Acquisition. arXiv:1506.06008v1
Q. Bichon. Optimizing the LMH6554 to Drive High Speed ADCs. http://www.tij.co.jp/jp/lit/ug/tidu172/tidu172.pdfhttp://www.tij.co.jp/jp/lit/ug/tidu172/tidu172.pdf
Texas Instruments. LMH6554 2.8 GHz Ultra Linear Fully Differential Amplifier. http://www.ti.com/lit/ds/snosb30p/snosb30p.pdfhttp://www.ti.com/lit/ds/snosb30p/snosb30p.pdf
Analog Devices. 16-Bit, 80 MSPS/105 MSPS/125 MSPS, 1.8 V Dual Analog-to-Digital Converter (ADC). http://www.analog.com/media/en/technical-documentation/data-sheets/AD9268.pdfhttp://www.analog.com/media/en/technical-documentation/data-sheets/AD9268.pdf.
Texas Instruments. 16-Bit, Single-Channel, Low-Noise, Voltage-Output DIGITAL-TO-ANALOG CONVERTER. http://www.ti.com/lit/ds/symlink/dac8881.pdfhttp://www.ti.com/lit/ds/symlink/dac8881.pdf
Altera Corporation. Cyclone V Device Datasheet. https://www.altera.com/en_US/pdfs/literature/hb/cyclone-v/cv_51002.pdfhttps://www.altera.com/en_US/pdfs/literature/hb/cyclone-v/cv_51002.pdf
S.R. Campbell, G.C. Stone, H.G. Sedding. Application of pulse width analysis to partial discharge detection. Conference Record of the 1992 IEEE International Symposium on Electrical Insulation(ISEI), Baltimore, MD, 07 Jun 1992, 345-348. DOI: 10.1109/ELINSL.1992.246979http://doi.org/10.1109/ELINSL.1992.246979
Z.H. Wu. Experimental method of nuclear physics. Beijing(China): Atomic Energy Press, 1997, 22-25
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution