Sheng-Xiang Wang, Ren-Fang Hu, Kun Gao, et al. Non-destructive study of fruits using grating-based X-ray imaging. [J]. Nuclear Science and Techniques 28(2):24(2017)
DOI:
Sheng-Xiang Wang, Ren-Fang Hu, Kun Gao, et al. Non-destructive study of fruits using grating-based X-ray imaging. [J]. Nuclear Science and Techniques 28(2):24(2017) DOI: 10.1007/s41365-016-0169-4.
Non-destructive study of fruits using grating-based X-ray imaging
摘要
Abstract
Grating-based X-ray imaging can make use of conventional tube sources to provide absorption, refraction and scattering contrast images from a single set of projection images efficiently. In this paper, a fresh cherry tomato and a dried umeboshi are imaged by using X-ray Talbot-Lau interferometer. The seed distribution in the scattering image of the cherry tomato, and the wrinkles of epicarp in the refraction image of the umeboshi, are shown distinctly. The refraction and scattering images provide more information on subtle features than the absorption image. Also, the contrast-to-noise ratio values show distinguishing capacity of the three kinds of imaging techniques. The results confirm that grating-based X-ray imaging is of great potential in non-destructive fruit testing.
M. Graves, A. Smith, B. Batchelor, Approaches to foreign body detection in foods. Trends. Food. Sci. Tech. 9: 21(1988). doi: 10.1016/S0924-2244(97)00003-4http://doi.org/10.1016/S0924-2244(97)00003-4
Q. Chen, C. Zhang, J. Zhao, et al., Recent advances in emerging imaging techniques for non-destructive detection of food quality and safety. Trac-trend. Anal. Chem. 52: 261(2013). doi: 10.1016/j.trac.2013.09.007http://doi.org/10.1016/j.trac.2013.09.007
A. Momose, Phase-sensitive imaging and phase tomography using X-ray interferometers. Opt. Express. 11: 2303(2003). doi: 10.1364/OE.11.002303http://doi.org/10.1364/OE.11.002303
T. Weitkamp, A. Diaz, C. David, et al., X-ray phase imaging with a grating interferometer. Opt. Express. 13: 6296(2005). doi: 10.1364/OPEX.13.006296http://doi.org/10.1364/OPEX.13.006296
A. Olivo, R. Speller, A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources. Appl. Phys. Lett. 91: 074106(2007). doi: 10.1063/1.2772193http://doi.org/10.1063/1.2772193
Y. I. Nesterets, S. W. Wilkins, Phase-contrast imaging using a scanning-doublegrating configuration. Opt. Express. 16: 5849(2008). doi: 10.1364/OE.16.005849http://doi.org/10.1364/OE.16.005849
F. Pfeiffer, M. Bech, O. Bunk, et al., Hard-X-ray dark-field imaging using a grating interferometer. Nature. Mater. 7: 134(2008). doi: 10.1038/nmat2096http://doi.org/10.1038/nmat2096
B. Yuan, W. Yan, G. Kun, et al., Investigation of noise properties in grating-based X-ray phase tomography with reverse projection method. Chin. Phys. B. 24: 108702(2015). doi: 10.1088/1674-1056/24/10/108702http://doi.org/10.1088/1674-1056/24/10/108702
F. Mendoza, P. Verboven, H. K. Mebatsion, et al., Three-dimensional pore space quantification of appletissueusing X-ray computed microtomography. Planta. 226: 559(2007). doi: 10.1007/s13197-011-0485-yhttp://doi.org/10.1007/s13197-011-0485-y
M. Stampanoni, Z. Wang, T. Thüring, et al., The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography. Invest. Radiol. 46: 801(2011). doi: 10.1097/RLI.0b013e31822a585fhttp://doi.org/10.1097/RLI.0b013e31822a585f
F. Pfeiffer, J. Herzen, M. Willner, et al., Grating-based X-ray phase contrast for biomedical imaging applications. Z. Me. Phys. 23: 176(2013). doi: 10.1016/j.zemedi.2013.02.002http://doi.org/10.1016/j.zemedi.2013.02.002
A. Momose, W. Yashiro, K. Kido, et al., X-ray phase imaging: from synchrotron to hospital. Philos. T. R. Soc. A. 372: 20130023(2014). doi: 10.1098/rsta.2013.0023http://doi.org/10.1098/rsta.2013.0023
C. Kottler, F. Pfeiffer, O. Bunk, et al., Grating interferometer based scanning setup for hard X-ray phase contrast imaging. Rev. Sci. Inst. 78: 043710(2007). doi: 10.1063/1.2723064http://doi.org/10.1063/1.2723064
M. S. Nielsen, T. Lauridsen, L. B. Christensen, et al., X-ray dark-field imaging for detection of foreign bodies in food. Food control. 30: 531(2013). doi: 10.1016/j.foodcont.2012.08.007http://doi.org/10.1016/j.foodcont.2012.08.007
M. Ruiz-Yaniz, F. Koch, I. Zanette, et al., X-ray grating interferometry at photon energies over 180 keV. Appl. Phys. Lett. 106: 151105(2015). doi: 10.1063/1.4917293http://doi.org/10.1063/1.4917293
B. M. Nicolai, K. Beullens, F. Bobelyn, et al., Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest. Bio. Tec. 46: 99(2007). doi: 10.1016/j.postharvbio.2007.06.024http://doi.org/10.1016/j.postharvbio.2007.06.024
D. Lorente, N. Aleixos, J. Gómez-Sanchis, et al., Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food. Bioprocess. Tech. 5: 1121(2012). doi: 10.1007/s11947-011-0725-1http://doi.org/10.1007/s11947-011-0725-1
A. Momose, W. Yashiro, H. Kuwabara, et al., Grating-based X-ray phase imaging using multiline X-ray source. J. Appl. Phys. 48: 076512(2009). doi: 10.1143/JJAP.48.076512http://doi.org/10.1143/JJAP.48.076512
W. Yashiro, Y. Takeda, A. Momose, Efficiency of capturing a phase image using cone-beam X-ray Talbot interferometry. JOSA. A. 25: 2025(2008). doi: 10.1364/JOSAA.25.002025http://doi.org/10.1364/JOSAA.25.002025
W. Sheng-Hao, M. P. Olbinado, A. Momose, et al., Experimental research on the feature of an X-ray Talbot-Lau interferometer versus tube accelerating voltage. Chin. Phys. B. 24: 068703(2015). doi: 10.1088/1674-1056/24/6/068703http://doi.org/10.1088/1674-1056/24/6/068703
J. Brunner-Popela, O. Glatter. Small-angle scattering of interacting particles. I. Basic principles of a global evaluation technique. J. Appl. Crystallog. 30: 431(1997). doi: 10.1107/S0021889896015749http://doi.org/10.1107/S0021889896015749
X. Song, B. W. Pogue, S. Jiang, et al., Automated region detection based on the contrast-to-noise ratio in near-infrared tomography. Appl. Optics. 43: 1053(2004). doi: 10.1364/AO.43.001053http://doi.org/10.1364/AO.43.001053