Shi-Tao Xiang, Hao Liang. A time and charge measurement board for muon tomography of high-Z materials. [J]. Nuclear Science and Techniques 28(3):40(2017)
DOI:
Shi-Tao Xiang, Hao Liang. A time and charge measurement board for muon tomography of high-Z materials. [J]. Nuclear Science and Techniques 28(3):40(2017) DOI: 10.1007/s41365-017-0183-1.
A time and charge measurement board for muon tomography of high-Z materials
摘要
Abstract
In this paper, a versatile time and charge measurement (MQT) board for muon tomography is described in detail. For time measurement, the general-purpose time-to-digital converter (TDC) chip TDC-GP2 is employed; while for charge measurement, digitization plus numerical integration in field programmable gate array (FPGA) is employed. Electronic tests demonstrate that the total 32 channels of 2 MQT boards have a time resolution of superior than 100 ps, with excellent linearity for time and charge measurement.
关键词
Keywords
Time and charge measurementGeneral-purpose time-to-digital converter (TDC-GP2)muon tomography
references
K.N. Borozdin, G.E. Hogan, C. Morris et al., Surveillance: Radiographic imaging with cosmic-ray muons. Nature. 422, 277 (2003). doi: 10.1038/422277ahttp://doi.org/10.1038/422277a
K. Gnanvo, L.V. Grasso, M. Hohlmann et al., Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors. Nucl. Instrum. Meth. A. 652, 16-20 (2011). doi: 10.1016/j.nima.2011.01.163http://doi.org/10.1016/j.nima.2011.01.163
L. Cox, P. Adsley, J. O. Malley et al., Detector requirements for a cosmic ray muon scattering tomography system. Nuclear Science Symposium Conference Record, 2008. NSS'08. IEEE. IEEE, 706-710 (2008).doi: 10.1109/NSSMIC.2008.4775227http://doi.org/10.1109/NSSMIC.2008.4775227
Y.G. Xie, C. Chen, M. Wang et al., Particle detectors and data acquisition. Beijing (China): Science Press, 2003, 91-104. (in Chinese)
BESIII Collaboration. Design and construction of the BESIII detector. Nucl. Instrum. Meth. A. 614, 345-399 (2010). doi: 10.1016/j.nima.2009.12.050http://doi.org/10.1016/j.nima.2009.12.050
L. Zhao, L.F. Kang, J.W. Zhou et al., A 16-Channel high-resolution time and charge measurement module for the external target experiment in the CSR of HIRFL. Nucl. Sci. Tech. 25, 010401 (2014). doi: 10.13538/j.1001-8042/nst.25.010401http://doi.org/10.13538/j.1001-8042/nst.25.010401
Q. An, Review of methods and techniques of precise interval measurements for particle physics experiments. Nucl. Tech. 29, 6 (2006). (in Chinese)
L. Dong, J.F. Yang, K.Z. Song, Carry-chain propagation delay impacts on resolution of FPGA-based TDC. Nucl. Sci. Tech. 25, 030401 (2014). doi: 10.13538/j.1001-8042/nst.25.030401http://doi.org/10.13538/j.1001-8042/nst.25.030401
X. Qin, C.Q. Feng, D.L. Zhang et al., A low dead time vernier delay line TDC implemented in an actel flash-based FPGA. Nucl. Sci. Tech. 24, 040403 (2013)
Z.H. Ma, M. Li, Research on pulse hand-held laser rangefinder based TDC-GP2. Computer Engineering and Technology (ICCET), 2010 2nd International Conference on (2010). doi: 10.1109/ICCET.2010.5485982http://doi.org/10.1109/ICCET.2010.5485982
F. Dou, H. Liang, L. Zhou et al., A precise time measurement evaluation board for a tomography system of high-Z materials. Nucl. Sci. Tech. 23, 5 (2012). doi: 10.13538/j.1001-8042/nst.23.284-288http://doi.org/10.13538/j.1001-8042/nst.23.284-288
F.S. Goulding, Pulse-shaping in low-noise nuclear amplifiers: A physical approach to noise analysis. Nucl. Instrum. Methods. 100, 493-504 (1972). doi: 10.1016/0029-554X(72)90828-2http://doi.org/10.1016/0029-554X(72)90828-2
P. Grybos, R. Szczygiel, Pole-zero cancellation circuit with pulse pile-up tracking system for low noise charge-sensitive amplifiers. IEEE. T. Nucl. Sci. 55, 583-590 (2008). doi: 10.1109/TNS.2007.914018http://doi.org/10.1109/TNS.2007.914018
C. Chen, W.W. Fan, Y.H. Pan et al., A multi-channel real-time digital integrator for magnetic diagnostics in HL-2A tokamak. Nucl. Sci. Tech. 27, 14 (2016). doi: 10.1007/s41365-016-0006-9http://doi.org/10.1007/s41365-016-0006-9
S.B. Liu, C.Q. Feng, H. Yan et al., LUT-based non-linearity compensation for BES III TOF’s time measurement. Nucl. Sci. Tech. 21, 49-53 (2010). doi: 10.13538/j.1001-8042/nst.21.49-53http://doi.org/10.13538/j.1001-8042/nst.21.49-53
Hybrid model for muon tomography and quantitative analysis of image quality
Experimental validation of material discrimination ability of muon scattering tomography at the TUMUTY facility
A modified multi-group model of angular and momentum distribution of cosmic-ray muons for thickness measurement and material discrimination of slabs
Test system of the front-end readout for an application-specific integrated circuit for the Water Cherenkov Detector Array at the Large High-Altitude Air Shower Observatory
A 16-Channel high-resolution time and charge measurement module for the external target experiment in the CSR of HIRFL
Related Author
No data
Related Institution
School of Nuclear Science and Technology, University of South China
Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University
Department of Nuclear Engineering, University of California
Department of Radiology and Biomedical Imaging, University of California
College of Nuclear Science and Technology, Beijing Normal University