1.College of Physics and Electronics Information, Inner Mongolia University for the Nationalities, Inner Mongolia, Tongliao 028000, China.
2.China Nuclear Data Center, China Institute of Atomic Energy, Beijing 102413, China.
3.Institute of Modern Physics, Chinese Academy of Sciences, Gansu, Lanzhou 730000, China.
4.School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
Corresponding author. E-mail address: zqchen@impcas.ac.cn
Scan for full text
Suyalatu Zhang, Yang-Bo Nie, Jie Ren, et al. Benchmarking of JEFF-3.2, FENDL-3.0 and TENDL-2014 evaluated data for tungsten with 14.8 MeV neutrons. [J]. Nuclear Science and Techniques 28(3):27(2017)
Suyalatu Zhang, Yang-Bo Nie, Jie Ren, et al. Benchmarking of JEFF-3.2, FENDL-3.0 and TENDL-2014 evaluated data for tungsten with 14.8 MeV neutrons. [J]. Nuclear Science and Techniques 28(3):27(2017) DOI: 10.1007/s41365-017-0192-0.
Integral experiments on tungsten slab samples were carried out on the D-T neutron source facility at China Institute of Atomic Energy. Leakage neutron spectra from the irradiated tungsten target were measured by the time-of-flight technique. Accuracy of the nuclear data for tungsten was examined by comparing the measured neutron spectra with the leakage neutron spectra simulated using the MCNP-4C code with evaluated nuclear data of the JEFF-3.2, FENDL-3.0 and TENDL-2014 libraries. The results show that the calculations with JEFF-3.2 agree well with the measurements in the whole energy range and all angles, whereas the spectra calculated with FENDL-3.0 and TENDL-2014 have some discrepancies with the experimental data.
Integral experimentD-T neutron sourceTime-Of-Flight techniqueLeakage neutron spectrumMonte Carlo simulationEvaluated nuclear data
D. L. Aldama, A. L. Nichols, ADS-2.0 a test library for accelerator driven systems and new reactor designs, INDC(NDS)-0545(2008). https://www-nds.iaea.org/publications/indc/indc-nds-0545/https://www-nds.iaea.org/publications/indc/indc-nds-0545/
M. B. Chadwick, P. Obložinský, M. Herman, et al., ENDF/B-VII.0 : Next generation evaluated nuclear data library for nuclear science and technology, Nucl. Data Sheets, 107,2931-3060(2006). doi: 10.1016/j.nds.2006.11.001http://doi.org/10.1016/j.nds.2006.11.001
M. B. Chadwick, M. Herman, P. Obložinský, et al., ENDF/B-VII.1 nuclear data for science and technology : cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets, 112,2887-2996(2011). doi: 10.1016/j.nds.2011.11.002http://doi.org/10.1016/j.nds.2011.11.002
K. Shibata, O. Iwamoto, T. Nakagawa, et al.,JENDL-4.0 : A new library for nuclear science and engineering, J. Nucl. Sci. Technol., 48, 1-30 (2011). doi: 10.1080/18811248.2011.9711675http://doi.org/10.1080/18811248.2011.9711675
Z. G. Ge, Z. X. Zhao, H. H. Xia, et al., The updated version of Chinese evaluated nuclear data library (CENDL-3.1), J. Korean Phys. Soc., 59, 1052-1056(2011). doi: 10.3938/jkps.59.1052http://doi.org/10.3938/jkps.59.1052
OECD Nuclear Energy Agency, JEFF-3.2 evaluated data library, 2014. http://www.oecd-nea.org/dbforms/data/eva/evatapes/jeff_32/http://www.oecd-nea.org/dbforms/data/eva/evatapes/jeff_32/
R. A. Forrest, R. Capote, N. Otsuka, et al., FENDL-3.0: Fusion evaluated nuclear data library, 2012, INDC(NDS-0628), https://www-nds.iaea.org/fendl30/https://www-nds.iaea.org/fendl30/
J. A. Koning, D. Rochman, S.C. van der Marck, et al., TENDL-2014: Talys-based evaluated nuclear data library, 2014, ftp://ftp.nrg.eu/pub/www/talys/tendl2014/tendl2014.htmlftp://ftp.nrg.eu/pub/www/talys/tendl2014/tendl2014.html
Y. Oyama, K. Kosako, H. Maekawa. Measurement and calculations of angular neutron flux spectra from iron slabs bombarded with 14.8 MeV neutrons. Nucl Sci Eng, 115, 24-37(1993).
J. Jordanova, L. Oláh, A. Fenyvesi, et al. Validation of neutron data libraries by comparison of measured and calculated neutron leakage spectra. Nucl Instrum Meth A, 421, 522-530(1999). doi: 10.1016/S0168-9002(98)01180-2http://doi.org/10.1016/S0168-9002(98)01180-2
D.V. Markovskij, A.I. Blokhin, V.A. Chirkin, et al., Integral benchmark experiments with 14 MeV neutrons for testing the nuclear data of vanadium. Fusion Eng Des, 69, 419-423(2003). doi: 10.1016/S0920-3796(03)00084-Xhttp://doi.org/10.1016/S0920-3796(03)00084-X
Y. Verzilov, S. Sato, K. Ochiai, et al., The integral experiment on beryllium with D-T neutrons for verification of tritium breeding. Fusion Eng Des, 82, 1-9(2007). doi: 10.1016/j.fusengdes.2005.12.007http://doi.org/10.1016/j.fusengdes.2005.12.007
C. Konno, K. Ochiai, M. Wada, et al., Analyses of fusion integral benchmark experiments at JAEA/FNS with FENDL-2.1 and other recent nuclear data libraries. Fusion Eng Des, 83, 1774-1781(2008). doi: 10.1016/j.fusengdes.2008.05.010http://doi.org/10.1016/j.fusengdes.2008.05.010
Y. Nie, J. Bao, X. Ruan, et al., Benchmarking of evaluated nuclear data for uranium by a 14.8 MeV neutron leakage spectra experiment with slab sample. Ann Nucl Energy, 37, 1456-1460(2010). doi: 10.1016/j.anucene.2010.06.018http://doi.org/10.1016/j.anucene.2010.06.018
S. Ohnishi, K. Kondo, T. Azuma, et al., New integral experiments for large angle scattering cross section data benchmarking with DT neutron beam at JAEA/FNS. Fusion Eng Des, 87, 695-699(2012). doi: 10.1016/j.fusengdes.2012.02.002http://doi.org/10.1016/j.fusengdes.2012.02.002
R. Liu, T. H. Zhu, X. S. Yan, et al., Progress of integral experiments in benchmark fission assemblies for a blanket of hybrid reactor. Nucl Data Sheets, 118,588-591(2014). doi: 10.1016/j.nds.2014.04.143http://doi.org/10.1016/j.nds.2014.04.143
I. Murata, T. Nishio, T. Kondo, et al., Neutron nuclear data benchmark for copper and tungsten by slab assembly transmission experiments with DT neutrons. Fusion Eng Des, 58-59, 617-621(2001). doi: 10.1016/S0920-3796(01)00518-Xhttp://doi.org/10.1016/S0920-3796(01)00518-X
P. Batistoni, M. Angelone, L. Petrizzi, et al., Neutronics benchmark experiment on tungsten. J Nucl Mater, 329-333,683-686(2004). doi: 10.1016/j.jnucmat.2004.04.191http://doi.org/10.1016/j.jnucmat.2004.04.191
K. Seidel, R. Eichin, U. Fischer, et al., Benchmark experiments to validate the nuclear data of tungsten. Fusion Eng Des, 81,1211-1217(2006). doi: 10.1016/j.fusengdes.2005.09.050http://doi.org/10.1016/j.fusengdes.2005.09.050
A Trkov, R. Capote, I. Kodeli, et al., Evaluation of tungsten nuclear reaction data with covariances. Nucl Data Sheets, 109,2905-2909(2008). doi: 10.1016/j.nds.2008.11.032http://doi.org/10.1016/j.nds.2008.11.032
C. Konno, K. Takakura, M. Wada, et al., Benchmark test of JENDL-4.0 based on integral experiments at JAEA/FNS. Progress in Nuclear Science and Technology, 2, 346-357(2011).
S. Marck. Benchmarking ENDF/B-VII.1, JENDL-4.0 and JEFF-3.1.1 with MCNP6. Nucl Data Sheets, 113, 2935-3005(2012). doi: 10.1016/j.nds.2012.11.003http://doi.org/10.1016/j.nds.2012.11.003
H. I. Kim, C. W. Lee, D. H. Kim, et al., Neutron cross section evaluation of tungsten and tantalum. Nucl Data Sheets, 118, 151-154(2014). doi: 10.1016/j.nds.2014.04.023http://doi.org/10.1016/j.nds.2014.04.023
S. Zhang, Z. Chen, Y. Nie, et al., Measurement of leakage neutron spectra for tungsten with D-T neutrons and validation of evaluated nuclear data. Fusion Eng Des, 92, 41-45(2015). doi: 10.1016/j.fusengdes.2015.01.010http://doi.org/10.1016/j.fusengdes.2015.01.010
J. Briesmeister (Ed.), MCNP-a general Monte Carlo N-Particle transport code system, Version 4C, Report LA-13709-M (2000).
R. Han, R. Wada, Z. Chen, et al., Fast neutron scattering on Gallium target at 14.8 MeV. Nucl Phys A, 936,17-28(2015). doi: 10.1016/j.nuclphysa.2015.01.004http://doi.org/10.1016/j.nuclphysa.2015.01.004
G. Dietze, H. Klein, Physikalisch-Technische Bundesanstalt, PTB-ND-22 (1982).
D. Schlegel, TARGET User's Mannual, Laboricht PTB-6.42-05-2 (2005).
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution