1.National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
Corresponding author: zhbo@ustc.edu.cn
Scan for full text
Jie Wang, Bo Zhang, Yan-Hui Xu, et al. Research on deposition rate of TiZrV/Pd film by DC magnetron sputtering method. [J]. Nuclear Science and Techniques 28(4):50(2017)
Jie Wang, Bo Zhang, Yan-Hui Xu, et al. Research on deposition rate of TiZrV/Pd film by DC magnetron sputtering method. [J]. Nuclear Science and Techniques 28(4):50(2017) DOI: 10.1007/s41365-017-0199-6.
An accelerator storage ring needs clean ultra-high vacuum. A TiZrV non-evaporable getter (NEG) film deposited on interior walls of the chamber can realize distributed pumping, effective vacuum improvement and reduced longitudinal pressure gradient. But accumulation of pollutants such as N,2, and O,2, will decrease the adsorption ability of the NEG, leading to a reduction of NEG lifetime. Therefore, an NEG thin film coated with a layer of Pd, which has high diffusion rate and absorption ability for H,2, can extend the service life of NEG and improve the pumping rate of H,2, as well. In this paper, with argon as discharge gas, a magnetron sputtering method is adopted to prepare TiZrV-Pd films in a long straight pipe. By SEM measurement, deposition rates of TiZrV-Pd films are analyzed under different deposition parameters, such as magnetic field strength, gas flow rate, discharge current, discharge voltage and working pressure. By comparing the experimental results with the simulation results based on Sigmund’s theory, the Pd deposition rate ,C, can be estimated by the sputtered depth.
TiZrV-Pddeposition ratesmagnetron sputtering methodnon-evaporable getter
C. Benvenuti, P. Chiggiato, F. Cicoira, et al., Vacuum properties of palladium thin film coatings. Vacuum 73 (2004) 139-144. DOI: 10.1016/j.vacuum.2003.12.022http://doi.org/10.1016/j.vacuum.2003.12.022
M. Mura, C. Paolini. Use of getter-catalyst thin films for enhancing ion pump vacuum performances. Journal of Vac Sci Technol A 25, 1234 (2007).DOI: 10.1116/1.2731348http://doi.org/10.1116/1.2731348
B. Hunschea, M. Vergohla, H. Neuhauser, et al., Effect of deposition parameters on optical and mechanical properties of MF- and DC-sputtered Nb2O5 films, Thin Solid Films 392 (2001) 184-190. DOI: 10.1016/S0040-6090(01)01025-2http://doi.org/10.1016/S0040-6090(01)01025-2
H. Altun, S. Sen, The effect of PVD coatings on the corrosion behaviour of AZ91 magnesium alloy, Materials and Design 27 (2006) 1174-1179. DOI: 10.1016/j.matdes.2005.02.004http://doi.org/10.1016/j.matdes.2005.02.004
J. Wang, B. Zhang, Y..H. Xu, et al. Deposition and characterization of TiZrV-Pd thin films by dc magnetron sputtering. Chinese Physics C, 39 (2015) 127007 DOI: 10.1088/1674-1137/39/12/127007http://doi.org/10.1088/1674-1137/39/12/127007
K. Meyer, I. K. Schuller, C. M. Falco. Thermalization of sputtered atoms. J. Appl. Phys. 52(9), 5803 (1981). DOI: 10.1063/1.329473http://doi.org/10.1063/1.329473
A. Gras-Marti, J.A. Valles-Abarca. Slowing down and thermalization of sputtered particle fluxes: Energy distributions. J. Appl. Phys. 54(2), 1071 (1983). DOI: 10.1063/1.332113http://doi.org/10.1063/1.332113
G.H. Gilmer, H. Huang, C. Roland. Thin film deposition: fundamentals and modeling. Computational Materials Science 12 (1998) 354-380. doi: 10.1016/S0927-0256(98)00022-6http://doi.org/10.1016/S0927-0256(98)00022-6
J. Li, J. P. McVittie, J. Ferziger, et al., Optimization of intermetal dielectric deposition module using simulation. J. Vac. Sci. Technol. B 13(1995) 1867. DOI: 10.1116/1.587826http://doi.org/10.1116/1.587826
J. H. Keller, R. G. Simmons, Sputtering process model of deposition rate. IBM J. Res. Dev. 23, 24 (1979). DOI: 10.1147/rd.231.0024http://doi.org/10.1147/rd.231.0024
M.P. Seah, An accurate semi-empirical equation for sputtering yields, II: for neon, argon and xenon ions. Nucl Instrum Meths in Phys Res B 229 (2005) 348-358. DOI: 10.1016/j.nimb.2004.12.129http://doi.org/10.1016/j.nimb.2004.12.129
P. Sigmund. Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Phys. Rev. 184(1969) 383. DOI: 10.1103/PhysRev.184.383http://doi.org/10.1103/PhysRev.184.383
N. Matsunami, Y. Yamamura, Y. Itikawa, et al., Energy dependence of the ion-induced sputtering yields of monatomic solids. Atom. Data Nucl. Data Tables 31 (1984) 1.DOI: 10.1016/0092-640X(84)90016-0http://doi.org/10.1016/0092-640X(84)90016-0
Y. Yamamura, H. Tawara. Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence. Atom. Data Nucl. Data Tables 62 (1996) 149. DOI: 10.1006/adnd.1996.0005http://doi.org/10.1006/adnd.1996.0005
GB/T 16594-2008. General rules for measurement of length in micron scale by SEM.
GB/T 20307-2006. General rules for nanometer-scale length measurement by SEM
GB/T 16594-1996. Micron grade length measurement by SEM
J.A. Thornton. Magnetron sputtering: basic physics and application to cylindrical magnetrons. Volume 15, Issue 2, 171-177(1978). DOI: 10.1116/1.569448http://doi.org/10.1116/1.569448
0
Views
0
Downloads
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution