1.School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China;
2.China Institute of Atomic Energy, Beijing 102413, China;
3.Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei 230031, China
Corresponding author. E-mail address: gelin@ustc.edu.cn
Scan for full text
Zhe Liu, Zhong Fang, Liang Wang, et al. Alpha-radiolysis of nitric acid aqueous solution irradiated by 238Pu source. [J]. Nuclear Science and Techniques 28(4):54(2017)
Zhe Liu, Zhong Fang, Liang Wang, et al. Alpha-radiolysis of nitric acid aqueous solution irradiated by 238Pu source. [J]. Nuclear Science and Techniques 28(4):54(2017) DOI: 10.1007/s41365-017-0200-4.
Alpha radiolysis of nitric acid aqueous solution by a ,238,Pu source is investigated experimentally and theoretically. The time dependence of the nitrous acid yield on dose rate, nitric acid concentration, and nitrate ion concentration is studied. A novel kinetic model for the α-radiolysis of nitric acid aqueous solution is established, by considering the direct and indirect effects,. The simulation results agree well with the experimental data, indicating the validity of our model to treat the reaction paths for generation and consumption of nitrous acid. It is shown that the redox reactions involving Pu cannot be neglected in the α-radiolysis of the solution. The results provide a better understanding of the α-ray radiolysis of aqueous nitric acid.
α-radiolysisNitric acidPlutoniumAqueous solutionKinetic modelNitrous acid
A.K. Pikaev, V.P. Shilov, A. V. Gogolev, Radiation chemistry of aqueous solutions of actinides, Russ. Chem. Rev. 66, 763-788 (1997).
G.R. Choppin, J. Rydberg, J.-O. Liljenzin, C. Ekberg, The nuclear fuel cycle, in: Radiochem. Nucl. Chem., Fourth, Elsevier, (Oxford, UK; Amsterdam, The Netherlands, 2013).
N. Tsoufanidis, The Nuclear Fuel Cycle, 1st ed., Amer Nuclear Society, (LA Grange Park, Illinois, U.S.A, 2013).
B.J. Mincher, G. Modolo, S.P. Mezyk, Review: The effects of radiation chemistry on solvent extraction 4: Separation of the trivalent actinides and considerations for radiation-resistant solvent systems, Solvent Extr. Ion Exch. 28, 415-436 (2010).
A. Mozumder, Y. Hatano, Charged Particle and Photon Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications, Marcel Dekker, Inc., (New York, 2004).
R. Tanaka, T. Seguchi, I. Nashiyama, et al., JAERI Review 95-019, 1995.
M. Daniels, E.E. Wigg, Radiation chemistry of the aqueous nitrate system. I. γ radiolysis of dilute solutions, J. Phys. Chem. 71, 1024-1033 (1967). doi: 10.1021/j100863a039http://doi.org/10.1021/j100863a039.
M. Daniels, E.E. Wigg, Radiation chemistry of the aqueous nitrate system. II. Scavenging and pH effects in the cobalt-60 γ radiolysis of concentrated sodium nitrate solutions, J. Phys. Chem. 73, 3703-3709 (1969).
M. Daniels, Radiation chemistry of the aqueous nitrate system. III. Pulse electron radiolysis of concentrated sodium nitrate solutions, J. Phys. Chem. 73, 3710-3717 (1969). doi: 10.1021/j100845a027http://doi.org/10.1021/j100845a027.
A.R. Kazanjian, F.J. Miner, A.K. Brown, et al., Radiolysis of nitric acid solutions : LET effects, Trans. Faraday Soc. 66, 2192-2198 (1970). doi: 10.1039/TF9706602192http://doi.org/10.1039/TF9706602192.
J. Cunningham, Radiation chemistry of ionic solids. IV. Modifying nitrate radiolysis in crystals by compression, J. Phys. Chem. 70, 30-39 (1966). doi: 10.1021/j100873a006http://doi.org/10.1021/j100873a006.
T.G. Ward, R.C. Axtmann, G.E. Boyd, Neutron-induced radiolysis of lithium nitrate: LET and phase change effects, Radiat. Res. 33, 456-464 (1968).
T.G. Ward, G.E. Boyd, R.C. Axtmann, Gamma radiolysis of molten lithium nitrate: Dose-rate effects, Radiat. Res. 33, 447-455 (1967). doi: 10.2307/3572402http://doi.org/10.2307/3572402.
H.B. Pogge, F.T. Jones, The effects of temperature and additives in the radiolysis of potassium nitrate, J. Phys. Chem. 74, 1700-1705 (1970). doi: 10.1021/j100703a008http://doi.org/10.1021/j100703a008.
N.E. Bibler, Curium-244 α radiolysis of nitric acid: Oxygen production from direct radiolysis of nitrate ions, J. Phys. Chem. 78, 211-215 (1974).
J.C. Sheppard, Alpha radiolysis of plutonium(IV)-nitric acid solutions, USAEC Report No. BNWL-751, 1968. doi: 10.2172/4505234http://doi.org/10.2172/4505234.
A.R. Kazanjian, D.R. Horrell, Radiolytically generated gases in plutonium-nitric acid solutions, Radiat. Eff. Inc. Plasma Sci. Plasma Technol. 13, 277-280 (1972). doi: 10.1080/00337577208231191http://doi.org/10.1080/00337577208231191.
A. Maimoni, Density and radiolytic decomposition of plutonium nitrate solutions, UCRL-52727, 1979. doi: 10.2172/5831913http://doi.org/10.2172/5831913.
M.L. Hyder, The radiolysis of aqueous nitrate solutions, J. Phys. Chem. 69, 1858-1865 (1965). doi: 10.1021/j100890a012http://doi.org/10.1021/j100890a012.
Y. Katsumura, P.Y. Jiang, R. Nagaishi, et al., Pulse radiolysis study of aqueous nitric acid solutions: Formation mechanism, yield, and reactivity of ˙NO3, Radical, J. Phys. Chem. 95, 4435-4439 (1991). doi: 10.1039/FT9949000093http://doi.org/10.1039/FT9949000093.
P. Jiang, R. Nagaishi, T. Yotsuyanagi, et al., γ-radiolysis study of concentrated nitric acid solutions, J. Chem. Soc. Faraday Trans. 90, 93-95 (1994). doi: 10.1039/FT9949000093http://doi.org/10.1039/FT9949000093.
H.A. Mahlman, The “direct effect” in the radiolysis of aqueous sodium nitrate solutions, J. Phys. Chem. 67, 1466-1469 (1963). doi: 10.1021/j100801a015http://doi.org/10.1021/j100801a015.
D. Rai, R.G. Strickert, J.L. Ryan, Alpha radiation induced production of HNO3 during dissolution of Pu compounds (1), Inorg. Nucl. Chem. Lett. 16, 551-555 (1980). doi: 10.1016/0020-1650(80)80009-2http://doi.org/10.1016/0020-1650(80)80009-2.
N.N. Andreychuk, A.A. Frolov, K. V. Rotmanov, et al., Plutonium(III) oxidation under α-irradiation in nitric acid solutions, J. Radioanal. Nucl. Chem. 143, 427-432 (1990). doi: 10.1007/BF02039611http://doi.org/10.1007/BF02039611.
G. Garaix, L. Venault, A. Costagliola, J. Maurin, M. Guigue, R. Omnee, G. Blain, J. Vandenborre, M. Fattahi, N. Vigier, P. Moisy, Alpha radiolysis of nitric acid and sodium nitrate with 4He2+ beam of 13.5 MeV energy, Radiat. Phys. Chem. 106, 394-403 (2015). doi: 10.1016/j.radphyschem.2014.08.008http://doi.org/10.1016/j.radphyschem.2014.08.008.
F.J. Miner, A.R. Kazanjian, A.K. Brown, et al., Radiation Chemistry of Nitric Acid Solutions, RFP-1299, 1969. doi: 10.2172/4805752http://doi.org/10.2172/4805752.
M. V. Vladimirova, Radiation chemistry of actinides, J. Radioanal. Nucl. Chem. 143, 445-454 (1990). doi: 10.1007/BF02039613http://doi.org/10.1007/BF02039613.
M. V. Vladimirova, Recent achievements of actinide radiation chemistry, J. Alloys Compd. 271-273, 723-727 (1998).
FACSIMILE for Windows Version 4.2.50, MCPA Software Ltd., (London, 2014).
G. Garaix, G.P. Horne, L. Venault, et al., Decay mechanism of NO3• radical in highly concentrated nitrate and nitric acidic solutions in the absence and presence of hydrazine, J. Phys. Chem. B. acs.jpcb.6b02915 (2016). doi: 10.1021/acs.jpcb.6b02915http://doi.org/10.1021/acs.jpcb.6b02915.
S. Yamashita, K. Iwamatsu, Y. Maehashi, et al., Sequential radiation chemical reactions in aqueous bromide solutions: pulse radiolysis experiment and spur model simulation, RSC Adv. 5, 25877-25886 (2015). doi: 10.1039/C5RA03101Jhttp://doi.org/10.1039/C5RA03101J.
G. V. Buxton, C.L. Greenstock, W.P. Helman, et al., Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals(•OH/•O-) in aqueous solution, J. Phys. Chem. Ref. Data. 17, 513 (1988). doi: 10.1063/1.555805http://doi.org/10.1063/1.555805.
S.P. Mezyk, D.M. Bartels, Temperature dependence of hydrogen atom reaction with nitrate and nitrite species in aqueous solution, J. Phys. Chem. A. 101, 6233-6237 (1997).
A. Balcerzyk, A.K. El Omar, U. Schmidhammer, et al., Picosecond pulse radiolysis study of highly concentrated nitric acid solutions: Formation mechanism of NO3• radical, J. Phys. Chem. A. 116, 7302-7307 (2012).
C. Gregson, C. Boxall, M. Carrott, et al., Neptunium(V) oxidation by nitrous acid in nitric zcid, Procedia Chem. 7, 398-403 (2012). doi: 10.1016/j.proche.2012.10.062http://doi.org/10.1016/j.proche.2012.10.062.
T.E. Eriksen, P. Ndalamba, H. Christensen, et al., Radiolysis of ground water: influence of carbonate and chloride on hydrogen peroxide production, J. Radioanal. Nucl. Chem. 132, 19-35 (1989).
A. Appleby, H.A. Schwarz, Radical and molecular yields in water irradiated by γ rays and heavy ions, J. Phys. Chem. 73, 1937-1941 (1969). doi: 10.1021/j100726a048http://doi.org/10.1021/j100726a048.
A.J. Elliot, D.M. Bartels, The Reaction Set, Rate constants and G-values for the simulation of the radiolysis of light water over the range 20°C to 350°C based on information available in 2008, 2009.
B.J. Mincher, M. Precek, S.P. Mezyk, et al., The redox chemistry of neptunium in γ-irradiated aqueous nitric acid, Radiochim. Acta. 101, 259-266 (2013). doi: 10.1524/ract.2013.2013http://doi.org/10.1524/ract.2013.2013.
B.J. Mincher, M. Precek, S.P. Mezyk, et al., The role of oxidizing radicals in neptunium speciation in γ-irradiated nitric acid, J. Radioanal. Nucl. Chem. 296, 27-30 (2013). doi: 10.1007/s10967-012-1937-1http://doi.org/10.1007/s10967-012-1937-1.
J.W. Coddington, J.K. Hurst, S. V Lymar, Hydroxyl radical formation during peroxynitrous acid decomposition, J. Am. Chem. Soc. 121, 2438-2443 (1999).
S. Goldstein, J. Lind, G. Merenyi, Chemistry of peroxynitrites as compared to peroxynitrates, Chem. Rev. 105, 2457-2470 (2005).
M.H. Lee, Y.J. Park, W.H. Kim, Absorption spectroscopic properties for Pu(III,IV and VI) in nitric and hydrochloric acid media, J. Radioanal. Nucl. Chem. 273, 375-382 (2007). doi: 10.1007/s10967-007-6848-1http://doi.org/10.1007/s10967-007-6848-1.
P.G. Hagan, F.J. Miner, Spectrophotometric determination of plutonium III, IV, and VI in nitric acid solutions, REP-1391, 1969.
R.E. Connick, W.H. McVey, The Transuranium Elements, McGraw-Hill Co., (New York, 1949).
T. Arakaki, T. Miyake, T. Hirakawa, et al., pH dependent photoformation of hydroxyl radical and absorbance of aqueous-phase N(III) (HNO2 and NO2-), Environ. Sci. Technol. 33, 2561-2565 (1999).
E. Riordan, N. Minogue, D. Healy, et al., Spectroscopic and optimization modeling study of nitrous acid in aqueous solution, J. Phys. Chem. A. 109, 779-786 (2005). doi: 10.1021/jp040269vhttp://doi.org/10.1021/jp040269v.
J. Liu, P. Song, H. Chen, et al., Determination of α dose rate of 238Pu solution, J. Nucl. Radiochem. 53, 156-159 (2013). doi: 10.7538/hhx.2013.35.03.0156http://doi.org/10.7538/hhx.2013.35.03.0156.
S. Goldstein, G. Czapski, J. Lind, et al., Mechanism of decomposition of peroxynitric ion (O2NOO-): Evidence for the formation, Inorg. Chem. 37, 3943-3947 (1998).
R.W. Matthews, H.A. Mahlman, T.J. Sworski, Elementary processes in the radiolysis of aqueous nitric acid solution: Determination of Both GOH and GNO2, J. Phys. Chem. 76, 2680-2684 (1972).
D. Vione, V. Maurino, C. Minero, et al., New processes in the environmental chemistry of nitrite. 2. The role of hydrogen peroxide, Environ. Sci. Technol. 37, 4635-4641 (2003).
J. Park, Y. Lee, Solubility and decomposition kinetics of nitrous acid in aqueous solution, J. Phys. Chem. 92, 6294-6302 (1988).
L.T. Bugaenko, B.M. Roshchektaev, Radiolytic conversions of nitrate ion in nitric acid solutions, Khimiya Vysok. Energii. 5, 472-474 (1971).
G.A. Poskrebyshev, P. Neta, R.E. Huie, Equilibrium constant of the reaction •OH+HNO3<⸻>H2O+NO3• in aqueous solution, J. Geophys. Res. 106, 4995-5004 (2001). doi: 10.1029/2000JD900702http://doi.org/10.1029/2000JD900702.
0
Views
0
Downloads
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution