1.Radiation Physics Laboratory, Physics Department, COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan.
2.Physics Division, Pakistan Institute of Nuclear Science & Technology (PINSTECH), Islamabad 45650, Pakistan
3.Department of Physics, College of Science, Majmaah University, Al-Zulfi, Saudi Arabia
4.School of Physics, University Science Malaysia, Penang 11800, Malaysia
5.DCIS, Pakistan Institute Engineering & Applied Sciences (PIEAS), Islamabad 45650, Pakistan
6.Health Physics Division (HPD), Pakistan Institute of Nuclear Science & Technology (PINSTECH), Islamabad 45650, Pakistan
Corresponding author. E-mail address: wazirm@hotmail.com
Scan for full text
Abdul Waheed, Nawab Ali, Muzahir A. Baloch, et al. Optimization of moderator assembly for neutron flux measurement: Experimental and theoretical approaches. [J]. Nuclear Science and Techniques 28(5):61(2017)
Abdul Waheed, Nawab Ali, Muzahir A. Baloch, et al. Optimization of moderator assembly for neutron flux measurement: Experimental and theoretical approaches. [J]. Nuclear Science and Techniques 28(5):61(2017) DOI: 10.1007/s41365-017-0213-z.
A moderator of paraffin wax assembly has been demonstrated where its thickness can be optimized to thermalize fast neutrons. The assembly is used for measuring fast neutron flux of a neutron probe at different neutron energies, using BF,3, (,Φ,1″and 2″) and ,3,He(,Φ,0.5″) neutron detectors. The paraffin wax thickness was optimized at 6 cm for the neutron probe which contains an Am-Be neutron source. The experimental data are compared with Monte Carlo simulation results using MCNP5 version 1.4. Neutron flux comparison and neutron activation techniques are used for measuring neutron flux of the neutron probe to validate the optimum paraffin moderator thickness in the assembly. The neutron fluxes are measured at (1.17 ± 0.09)×10,5, n/s and (1.19 ± 0.1)×10,5, n/s, being in agreement with the simulated values. The moderator assembly can easily be utilized for essential requirements of neutron flux measurements.
Am-Be and 252Cf neutron sourcesBF3&3He detectorsParaffin waxNeutron fluxMonte Carlo simulation
R. Bedogni, C. Domingo, N. Roberts, et al., Investigation of the neutron spectrum of americium-beryllium sources by Bonner sphere spectrometry. Nucl Instru and Meths in Phys Res Section A, 763: 547-552. (2014) doi: 10.1016/j.nima.2014.06.040http://doi.org/10.1016/j.nima.2014.06.040
F.D. Becchetti, M. Febbraro, R. Torres-Isea, et al., 252Cf fission-neutron spectrum using a simplified time-of-flight setup: An advanced teaching laboratory experiment. American Journal of Physics, 81: 112-119. (2013) doi: 10.1119/1.4769032http://doi.org/10.1119/1.4769032
S. Croft K.A.M., Group representation of the prompt fission neutron spectrum of 252Cf. Esarda Bulletin: 112-114. (2011) https://esarda.jrc.ec.europa.eu/images//Bulletin/Files/B_2011_046.pdfhttps://esarda.jrc.ec.europa.eu/images//Bulletin/Files/B_2011_046.pdf
J.W. Marsh, D.J. Thomas, M. Burke, High resolution measurements of neutron energy spectra from Am-Be and Am-B neutron sources. Nucl Instru Meths in Phys Res Section A, 366: 340-348. (1995) doi: 10.1016/0168-9002(95)00613-3http://doi.org/10.1016/0168-9002(95)00613-3
J.H. Wu, Y.J. Xu, S.L. Liu, et al., Energy spectrum measurement and dose rate estimation of natural neutrons in Tibet region. Nucl. Sci. Tech., 26: 060202. (2015) doi: 10.13538/j.1001-8042/nst.26.060202http://doi.org/10.13538/j.1001-8042/nst.26.060202
Z.G. Jiang, Y.G. Yuan, H.Y. Wang, et al., Development of a spherical tissue equivalent proportional counter for neutron monitoring. Nucl. Sci. Tech., 26: 060403. (2015) doi: 10.13538/j.1001-8042/nst.26.060403http://doi.org/10.13538/j.1001-8042/nst.26.060403
B. Wolle, R. BÃtzner, T. Baloui, et al., Special absorber neutron detector moderator assembly: A new detector system for flux measurements of collimated 2.5 MeV neutrons. Review of Scientific Instruments, 70: 1194-1196. (1999) doi: 10.1063/1.1149322http://doi.org/10.1063/1.1149322
M. A. Rana, Research and applications of nuclear tracks: Developments in Pakistan and global comparison. Natural Science, 2012. (2012) doi: 10.4236/ns.2012.431124http://doi.org/10.4236/ns.2012.431124
G.F. Knoll, Radiation detection and measurement. 2000: John Wiley & Sons.
M.U. Rajput, N.L. Maidana, V.R. Vanin, et al., Measurement of thermal neutron cross section and resonance integral for the 165Ho(n,γ) 166Ho reaction. Radiochimica Acta International Journal for Chemical Aspects of Nuclear Science and Technology, 97: 63-69. (2009) doi: 10.1524/ract.2009.1575http://doi.org/10.1524/ract.2009.1575
M. Akram, A. Iqbal, S.N. Husaini, et al., Determination of boron contents in water samples collected from the Neelum valley, Azad Kashmir, Pakistan. Biological Trace Element Research, 139: 287-295. (2011) doi: 10.1007/s12011-010-8665-6http://doi.org/10.1007/s12011-010-8665-6
K. Haygarth, D. Janik, I. Janik, et al., Neutron and β/γ radiolysis of water up to supercritical conditions. 1. β/γ yields for H2, H· atom, and hydrated electron. The Journal of Physical Chemistry A, 114: 5034-5034. (2010) doi: 10.1021/jp101790phttp://doi.org/10.1021/jp101790p
M. Barbagallo, L. Cosentino, V. Forcina, et al., Thermal neutron detection using a silicon pad detector and 6LiF removable converters. Review of Scientific Instruments, 84: 033503. (2013) doi: 10.1063/1.4794768http://doi.org/10.1063/1.4794768
A.A. Naqvi, M.S. Abdelmonem, G. Al-Misned, et al., New source-moderator geometry to improve performance of 252 Cf and 241 Am-Be source-based PGNAA setups. Nucl Instru Meths in Phys Res Section A: 562: 358-364. (2006) doi: 10.1016/j.nima.2006.02.004http://doi.org/10.1016/j.nima.2006.02.004
S. Ahmad, S.S. Hussain, M. Sadiq, et al., Enhanced and reproducible neutron emission from a plasma focus with pre-ionization induced by depleted uranium (U238). Plasma Physics and Controlled Fusion, 48: 745. (2006) doi: 10.1088/0741-3335/48/6/003http://doi.org/10.1088/0741-3335/48/6/003
V. Ananiev, A. Belyakov, M. Bulavin, et al., The world's first pelletized cold neutron moderator at a neutron scattering facility. Nucl Instru Meths in Phys Res Section B, 320: 70-74. (2014) http://www1.jinr.ru/Preprints/2012/113(P13-2012-113).pdfhttp://www1.jinr.ru/Preprints/2012/113(P13-2012-113).pdf
S.N. Ahmed, Physics and engineering of radiation detection. 2007: Academic Press.
M. Zakaullah, A. Waheed, S. Ahmad, et al., Study of neutron emission in a low-energy plasma focus with β-source-assisted breakdown. Plasma Sources Science and Technology, 12: 443. (2003) doi: 10.1088/0963-0252/12/3/320http://doi.org/10.1088/0963-0252/12/3/320
M. Zakaullah, K. Alamgir, A. Rasool, et al., Correlation of plasma electron temperature with neutron emission in a low-energy plasma focus. Plasma Science, IEEE Transactions on, 29: 62-68. (2001) doi: 10.1109/27.912943http://doi.org/10.1109/27.912943
M. Zakaullah, I. Akhtar, A. Waheed, et al., Comparative study of ion, X-ray and neutron emission in a low energy plasma focus. Plasma Sources Science and Technology, 7: 206. (1998) doi: 10.1088/0963-0252/7/2/015http://doi.org/10.1088/0963-0252/7/2/015
C. International, Neutron probe method using a 503DR Hydroprobe, ICT, Editor, International Pty Ltd: Australia.
M. Borsaru and P.L. Eisler, Neutron Activation Analysis (Slow Neutrons), in United States Patent. 1982.
M.H. Jasim and N.T. Abdulameer, Neutron capture cross section measurements of paraffin wax. International Journal of Application or Innovation in Engineering of Management, 3: 112-114. (2014) http://ijaiem.org/volume3issue4/IJAIEM-2014-04-20-034.pdfhttp://ijaiem.org/volume3issue4/IJAIEM-2014-04-20-034.pdf
S.N. Goshal, Nuclear Physics. 1994, S Chand Publisher
V.M. Thakur, A. Jain, K. Biju, et al., Studies on optimization of moderator thickness for BF3 detectors used for monitoring of fissile material. Indian Journal of Pure and Applied Physics, 50: 811-813. (2012) http://nopr.niscair.res.in/handle/123456789/14910http://nopr.niscair.res.in/handle/123456789/14910
A.A. Naqvi, M.M. Nagadi, M. Maslehuddin, et al., Verification of design calculations of a PGNAA setup using nuclear track detectors. Radiation Measurements, 38: 37-41. (2004) doi: 10.1016/S1350-4487(03)00252-Xhttp://doi.org/10.1016/S1350-4487(03)00252-X
J.K. Zhao, J.L. Robertson, K.W. Herwig, et al., Optimizing moderator dimensions for neutron scattering at the spallation neutron source. Review of Scientific Instruments, 84: 125104. (2013) doi: 10.1063/1.4841875http://doi.org/10.1063/1.4841875
J.F. Ziegler, M.D. Ziegler, and J.P. Biersack, SRIM-The stopping and range of ions in matter (2010). Nucl Instru Meths in Phys Res Section B, 268: 1818-1823. (2010) DOI: 10.1016/j.nimb.2010.02.091http://doi.org/10.1016/j.nimb.2010.02.091
R. A. Forster T.N.K.G., MCNP - A General Monte Carlo N-Particle Transport Code, Version 5. 2003
J.R. Parrington, D.K. Harold, L.B. Susan, et al., Chart of radionuclides-Knoll Atomic Power Laboratory. Washington, DC: Naval Reactors, US Department of Energy. (1996).
M.B. Chadwick, M. Herman, P. Obložinský, et al., ENDF/B-VII. 1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nuclear Data Sheets, 112: 2887-2996. (2011) doi: 10.1016/j.nds.2011.11.002http://doi.org/10.1016/j.nds.2011.11.002
X-5 Monte Carlo Team, MCNP - A General Monte Carlo N-Particle Transport Code, Version 5. 2003.
M. Tohamy, M. Fayez-Hassan, M.M. Abdel-Khalek, et al., A dual-hemisphere (spherical) irradiation facility for Am-Be neutron field optimization. (2009) http://www.iaea.org/inis/collection/NCLCollectionStore/Public/42/009/42009903.pdfhttp://www.iaea.org/inis/collection/NCLCollectionStore/Public/42/009/42009903.pdf.
0
Views
0
Downloads
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution