Guo-Dong Cheng, Ye Chen, Long YAN, et al. PL and ESR study for defect centers in 4H-SiC induced by oxygen ion implantation. [J]. Nuclear Science and Techniques 28(8):105(2017)
DOI:
Guo-Dong Cheng, Ye Chen, Long YAN, et al. PL and ESR study for defect centers in 4H-SiC induced by oxygen ion implantation. [J]. Nuclear Science and Techniques 28(8):105(2017) DOI: 10.1007/s41365-017-0263-2.
PL and ESR study for defect centers in 4H-SiC induced by oxygen ion implantation
摘要
Abstract
Radiation damage in 4,H,-SiC samples implanted by 70 keV oxygen ion beams was studied using photoluminescence and electron spin resonance techniques. ESR peak of ,g,=2.0053 and two zero-phonon lines (ZPL) were observed with the implanted samples. Combined with theoretical calculations, we found that the main defect in the implanted 4,H,-SiC samples was oxygen-vacancy complex. The calculated defect formation energies showed that the oxygen-vacancy centers were stable in ,n,-type 4,H,-SiC. Moreover, the ,, and ,, centers were optically addressable. The results suggest promising spin coherence properties for quantum information science.
关键词
Keywords
Ion implantationElectron spin resonancePhotoluminescenceFirst-principles calculations
references
J.R. Weber, W.F. Koehl, J.B. Varley, et al., Quantum computing with defects. Proc. Natl. Acad. Sci. U.S.A. 107, 8513-8518 (2010). doi: 10.1073/pnas.1003052107http://doi.org/10.1073/pnas.1003052107
P. Neumann, N. Mizuochi, F. Rempp, et al., Multipartite entanglement among single spins in diamond. Science 320, 1326-1329 (2008). doi: 10.1126/science.1157233http://doi.org/10.1126/science.1157233
A.L. Falk, B.B. Buckley, G. Calusine, et al., Polytype control of spin qubits in silicon carbide. Nat. Commun. 4, 1819 (2013). doi: 10.1038/ncomms2854http://doi.org/10.1038/ncomms2854
L.P. Yang, C. Burk, M. Widmann, et al., Electron spin decoherence in silicon carbide nuclear spin bath. Phys. Rev. B 90, 241203 (2014). doi: 10.1103/PhysRevB.90.241203http://doi.org/10.1103/PhysRevB.90.241203
P.G. Baranov, A.P. Bundakova, A.A. Soltamova, et al., Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy. Phys. Rev. B 83, 125203 (2011). doi: 10.1103/PhysRevB.83.125203http://doi.org/10.1103/PhysRevB.83.125203
K. Szász, V. Ivády, I.A. Abrikosov, et al., Spin and photophysics of carbon-antisite vacancy defect in 4H silicon carbide: A potential quantum bit. Phys. Rev. B 91, 121201 (2015). doi: 10.1103/PhysRevB.91.121201http://doi.org/10.1103/PhysRevB.91.121201
H.J. von Bardeleben, J.L. Cantin, E. Rauls, et al., Identification and magneto-optical properties of the NV center in 4H-SiC. Phys. Rev. B 92, 064104 (2015). doi: 10.1103/Physrevb.92.064104http://doi.org/10.1103/Physrevb.92.064104
M. Ishimaru, R.M. Dickerson, K.E. Sickafus, High-dose oxygen ion implantation into 6H-SiC. Appl. Phys. Lett. 75, 352-354 (1999). doi: 10.1063/1.124372http://doi.org/10.1063/1.124372
A. Uedono, S. Tanigawa, T. Ohshima, et al., Oxygen-related defects in O+-implanted 6H-SiC studied by a monoenergetic positron beam. J. Appl. Phys. 86, 5392-5398 (1999). doi: 10.1063/1.371536http://doi.org/10.1063/1.371536
T. Ozaki, Variationally optimized atomic orbitals for large-scale electronic structures. Phys. Rev. B 67, 155108 (2003). doi: 10.1103/Physrevb.67.155108http://doi.org/10.1103/Physrevb.67.155108
N. Troullier, J.L. Martins, Efficient Pseudopotentials for Plane-Wave Calculations. Phys. Rev. B 43, 1993-2006 (1991). doi: 10.1103/PhysRevB.43.1993http://doi.org/10.1103/PhysRevB.43.1993
P. Giannozzi, S. Baroni, N. Bonini,et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009). doi: 10.1088/0953-8984/21/39/395502http://doi.org/10.1088/0953-8984/21/39/395502
J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207-8215 (2003). doi: 10.1063/1.1564060http://doi.org/10.1063/1.1564060
A. Gali, E. Janzen, P. Deak, et al., Theory of spin-conserving excitation of the NV- center in diamond. Phys. Rev. Lett. 103, 186404 (2009). doi: 10.1103/Physrevlett.103.186404http://doi.org/10.1103/Physrevlett.103.186404
N.T. Son, P.N. Hai, E. Janzen, Silicon antisite in 4H SiC. Phys. Rev. Lett. 87, 045502 (2001). doi: 10.1103/PhysRevLett.87.045502http://doi.org/10.1103/PhysRevLett.87.045502
N.T. Son, X.T. Trinh, L.S. Lovlie, et al., Negative-U System of Carbon Vacancy in 4H-SiC. Phys. Rev. Lett. 109, 187603 (2012). doi: 10.1103/Physrevlett.109.187603http://doi.org/10.1103/Physrevlett.109.187603
Y.G. Zhang, Z. Tang, X.G. Zhao, et al., A neutral oxygen-vacancy center in diamond: A plausible qubit candidate and its spintronic and electronic properties. Appl. Phys. Lett. 105, 052107 (2014). doi: 10.1063/1.4892654http://doi.org/10.1063/1.4892654
N.T. Son, A. Henry, J. Isoya, et al., Electron paramagnetic resonance and theoretical studies of shallow phosphorous centers in3C-,4H-, and 6H-SiC. Phys. Rev. B 73, 075201 (2006). doi: 10.1103/PhysRevB.73.075201http://doi.org/10.1103/PhysRevB.73.075201
L. Gordon, A. Janotti, C.G. Van de Walle, Defects as qubits in 3C- and 4H-SiC. Phys. Rev. B 92, 045208 (2015). doi: 10.1103/Physrevb.92.045208http://doi.org/10.1103/Physrevb.92.045208
S. Arpiainen, K. Saarinen, P. Hautojarvi, et al., Optical transitions of the silicon vacancy in 6H-SiC studied by positron annihilation spectroscopy. Phys. Rev. B 66, 075206 (2002). doi: 10.1103/Physrevb.66.075206http://doi.org/10.1103/Physrevb.66.075206
C.G. Van de Walle, J. Neugebauer, First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys. 95, 3851-3879 (2004). doi: 10.1063/1.1682673http://doi.org/10.1063/1.1682673
A. Lenef, S.C. Rand, Electronic structure of the N-V center in diamond: Theory. Phys. Rev. B 53, 13441-13455 (1996). doi: 10.1103/PhysRevB.53.13441http://doi.org/10.1103/PhysRevB.53.13441
J.A. Larsson, P. Delaney, Electronic structure of the nitrogen-vacancy center in diamond from first-principles theory. Phys. Rev. B 77, 165201 (2008). doi: 10.1103/Physrevb.77.165201http://doi.org/10.1103/Physrevb.77.165201
F.M. Hossain, M.W. Doherty, H.F. Wilson, et al., Ab Initio Electronic and Optical Properties of the NV-1 Center in Diamond. Phys. Rev. Lett. 101, 226403 (2008). doi: 10.1103/Physrevlett.101.226403http://doi.org/10.1103/Physrevlett.101.226403
Y. Tu, Z. Tang, X.G. Zhao, et al., A paramagnetic neutral VAlON center in wurtzite AlN for spin qubit application. Appl. Phys. Lett. 103, 072103 (2013). doi: 10.1063/1.4818659http://doi.org/10.1063/1.4818659
Photoluminescence from neodymium silicide thin films formed by MEVVA ion source
Surface metallization of PTFE and PTFE composites by ion implantation for low-background electronic substrates in rare-event detection experiments
Free-radical evolution and decay in cross-linked polytetrafluoroethylene irradiated by gamma-rays
Mercury (II) Detection by Water-Soluble Photoluminescent Ultra-Small Carbon Dots Synthesized from Cherry Tomatoes
TiO2 nanofilm growth by Ti ion implantation and thermal annealing in O2 atmosphere
Related Author
No data
Related Institution
Key Laboratory in University for Radiation Beam Technology and Materials Modification, Institute of Low Energy Nuclear Physics, Beijing Normal University; Beijing Radiation Center
Department of Materials Science and Engineering, Nanchang University
Department of Physics, Nanchang University
Joint Research Center, Nuctech Company Limited
College of Nuclear Science and Technology, Joint Laboratory of Jinping Ultra-low Radiation Background Measurement of Ministry of Ecology and Environment and Beijing Normal University, Key Laboratory of Beam Technology of Ministry of Education, Beijing Normal University