1.The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
2.Beijing Radiation Center, Beijing 100875, China
3.Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China
licheng@mail.bnu.edu.cn
fszhang@bnu.edu.cn
Scan for full text
Cheng Li, Peiwei Wen, Jingjing Li, et al. Production of heavy neutron-rich nuclei with radioactive beams in multinucleon transfer reactions. [J]. Nuclear Science and Techniques 28(8):110(2017)
Cheng Li, Peiwei Wen, Jingjing Li, et al. Production of heavy neutron-rich nuclei with radioactive beams in multinucleon transfer reactions. [J]. Nuclear Science and Techniques 28(8):110(2017) DOI: 10.1007/s41365-017-0266-z.
The production mechanism of heavy neutron-rich nuclei is investigated by using the multinucleon transfer reactions of ,136,148,Xe+,208,Pb and ,238,U+,208,Pb in the framework of a dinuclear system model. The evaporation residual cross sections of target-like fragments are studied with the reaction system ,148,Xe+,208,Pb at near barrier energies. The results show that the final isotopic production cross sections in the neutron-deficient side are very sensitive to incident energy while it is not sensitive in the neutron-rich side. Comparing the isotopic production cross sections for the reactions of,208,Pb bombarded with stable and radioactive projectiles, we find that neutron-rich radioactive beams can significantly increase the production cross sections of heavy neutron-rich nuclei.
Multinucleon transfer reactionsDNS modelHeavy-ion collisionsNeutron-rich nuclei
C. Li, F. Zhang, J.J. Li et al., Multinucleon transfer in the 136Xe+208Pb reaction. Phys. Rev. C 93, 014618 (2016). doi: 10.1103/PhysRevC.93.014618http://doi.org/10.1103/PhysRevC.93.014618
J.S. Barrett, W. Loveland, R. Yanez et al., 136Xe+208Pb reaction: A test of models of multinucleon transfer reactions. Phys. Rev. C 91, 064615 (2015). doi: 10.1103/PhysRevC.91.064615http://doi.org/10.1103/PhysRevC.91.064615
V.I. Zagrebaev, W. Greiner, Production of New Heavy Isotopes in Low-Energy Multinucleon Transfer Reactions. Phys. Rev. Lett. 101, 122701 (2008). doi: 10.1103/PhysRevLett.101.122701http://doi.org/10.1103/PhysRevLett.101.122701
W. Loveland, A.M. Vinodkumar, D. Peterson et al., Synthesis of heavy nuclei using damped collisions: A test. Phys. Rev. C 83, 044610 (2011). doi: 10.1103/PhysRevC.83.044610http://doi.org/10.1103/PhysRevC.83.044610
V.I. Zagrebaev, W. Greiner, Production of heavy trans-target nuclei in multinucleon transfer reactions. Phys. Rev. C 87, 034608 (2013). doi: 10.1103/PhysRevC.87.034608http://doi.org/10.1103/PhysRevC.87.034608
V.I. Zagrebaev, W. Greiner, Production of heavy and superheavy neutron-rich nuclei in transfer reactions. Phys. Rev. C 83, 044618 (2011). doi: 10.1103/PhysRevC.83.04461http://doi.org/10.1103/PhysRevC.83.04461
L. Zhu, J. Su, F.S. Zhang, Influence of the neutron numbers of projectile and target on the evaporation residue cross sections in hot fusion reactions. Phys. Rev. C 93, 064610 (2016). doi: 10.1103/PhysRevC.93.064610http://doi.org/10.1103/PhysRevC.93.064610
K. Zhao, Z.X. Li, N. Wang et al., Production mechanism of neutron-rich transuranium nuclei in 238U+238U collisions at near-barrier energies. Phys. Rev. C 92, 024613 (2015). doi: 10.1103/PhysRevC.92.024613http://doi.org/10.1103/PhysRevC.92.024613
Y.X. Watanabe, Y.H. Kim, S.C. Jeong et al., Pathway for the production of neutron-rich isotopes around the N=126 shell closure. Phys. Rev. Lett. 115, 172503 (2015). doi: 10.1103/PhysRevLett.115.172503http://doi.org/10.1103/PhysRevLett.115.172503
K. Sekizawa, K. Yabana, Time-dependent Hartree-Fock calculations for multinucleon transfer processes in 40,48Ca+124Sn, 40Ca+208Pb, and 58Ni+208Pb reactions. Phys. Rev. C 88, 014614 (2013). doi: 10.1103/PhysRevC.88.014614http://doi.org/10.1103/PhysRevC.88.014614
K. Sekizawa, K. Yabana, Time-dependent Hartree-Fock calculations for multinucleon transfer and quasifission processes in the 64Ni+238U reaction. Phys. Rev. C 93, 054616 (2016). doi: 10.1103/PhysRevC.93.054616http://doi.org/10.1103/PhysRevC.93.054616
C.C. Guo, J. Su, F.S. Zhang, Comparison between nuclear thermometers in central Xe + Sn collision. Nucl. Sci. Tech. 24, 050513 (2013). doi: 10.13538/j.1001-8042/nst.2013.05.013http://doi.org/10.13538/j.1001-8042/nst.2013.05.013
C.W. Ma, C.Y. Qiao, T.T. Ding et al., Temperature of intermediate mass fragments in simulated 40Ca + 40Ca reactions around the Fermi energies by AMD model. Nucl. Sci. Tech. 27, 111 (2016). doi: 10.1007/s41365-016-0112-8http://doi.org/10.1007/s41365-016-0112-8
X.F. Li, D.Q. Fang, Y.G. Ma, Determination of the neutron skin thickness from interaction cross section and charge-changing cross section for B, C, N, O, F isotopes. Nucl. Sci. Tech. 27, 71 (2016). doi: 10.1007/s41365-016-0064-zhttp://doi.org/10.1007/s41365-016-0064-z
R. Wang, L.W. Chen, Positioning the neutron drip line and the r-process paths in the nuclear landscape. Phys. Rev. C 92, 031303(R) (2015). doi: 10.1103/PhysRevC.92.031303http://doi.org/10.1103/PhysRevC.92.031303
J. Kurcewicz, F. Farinon, H. Geissel et al., Discovery and cross-section measurement of neutron-rich isotopes in the element range from neodymium to platinum with the FRS. Phys. Lett. B 717, 371 (2012). doi: 10.1016/j.physletb.2012.09.021http://doi.org/10.1016/j.physletb.2012.09.021
O.B. Tarasov, D.J. Morrissey, A.M. Amthor et al., Evidence for a Change in the Nuclear Mass Surface with the Discovery of the Most Neutron-Rich Nuclei with 17≤Z≤25. Phys. Rev. Lett. 102, 142501 (2009). doi: 10.1103/PhysRevLett.102.142501http://doi.org/10.1103/PhysRevLett.102.142501
J.M. D’Auria, A review of radioactive beam facilities in the world. Nucl. Instrum. Methods B 99, 330 (1995). doi: 10.1016/0168-583X(95)80083-2http://doi.org/10.1016/0168-583X(95)80083-2
T. Motobayashi, H. Sakurai, Research with fast radioactive isotope beams at RIKEN. Prog. Theor. Exp. Phys. 2012, 03C001 (2012). doi: 10.1093/ptep/pts059http://doi.org/10.1093/ptep/pts059
W. Loveland, Synthesis of transactinide nuclei using radioactive beams. Phys. Rev. C 76, 014612 (2007). doi: 10.1103/PhysRevC.76.014612http://doi.org/10.1103/PhysRevC.76.014612
M.H. Mun, G.G. Adamian, N.V. Antonenko et al., Toward neutron-rich nuclei via transfer reactions with stable and radioactive beams. Phys. Rev. C 91, 054610 (2015). doi: 10.1103/PhysRevC.91.054610http://doi.org/10.1103/PhysRevC.91.054610
J.C. Yang, J.W. Xia, G.Q. Xiao et al., High Intensity heavy ion Accelerator Facility (HIAF) in China. Nucl. Instrum. Methods B 317, 263 (2013). doi: 10.1016/j.nimb.2013.08.046http://doi.org/10.1016/j.nimb.2013.08.046
L.J. Mao, J.C. Yang, J.W. Xia et al., Electron cooling system in the booster synchrotron of the HIAF project. Nucl. Instrum. Methods A 786, 91 (2015). doi: 10.1016/j.nima.2015.03.052http://doi.org/10.1016/j.nima.2015.03.052
N. Wang, E.G. Zhao, W. Scheid et al., Theoretical study of the synthesis of superheavy nuclei with Z=119 and 120 in heavy-ion reactions with trans-uranium targets. Phys. Rev. C 85, 041601(R) (2012). doi: 10.1103/PhysRevC.85.041601http://doi.org/10.1103/PhysRevC.85.041601
Z.Q. Feng, G.M. Jin, F. Fu et al., Production cross sections of superheavy nuclei based on dinuclear system model. Nucl. Phys. A 771, 50 (2006). doi: 10.1016/j.nuclphysa.2006.03.002http://doi.org/10.1016/j.nuclphysa.2006.03.002
X.J. Bao, Y. Gao, J.Q. Li et al., Possibilities for synthesis of new isotopes of superheavy nuclei in cold fusion reactions. Phys. Rev. C 93, 044615 (2016). doi: 10.1103/PhysRevC.93.044615http://doi.org/10.1103/PhysRevC.93.044615
Z.Q. Feng, G.M. Jin, J.Q. Li, Production of heavy isotopes in transfer reactions by collisions of 238U+238U. Phys. Rev. C 80, 067601 (2009). doi: 10.1103/PhysRevC.80.067601http://doi.org/10.1103/PhysRevC.80.067601
M.H. Mun, G.G. Adamian, N.V. Antonenko et al., Production cross section of neutron-rich isotopes with radioactive and stable beams. Phys. Rev. C 89, 034622 (2014). doi: 10.1103/PhysRevC.89.034622http://doi.org/10.1103/PhysRevC.89.034622
L. Zhu, Z.Q. Feng, F.S. Zhang, Production of heavy neutron-rich nuclei in transfer reactions within the dinuclear system model. J. Phys. G 42, 085102 (2015). doi: 10.1088/0954-3899/42/8/085102http://doi.org/10.1088/0954-3899/42/8/085102
S. Ayik, Schürmann , W. Nörenberg, Microscopic transport theory of heavy-ion collisions I. basic relations and transport coefficients for symmetric fragmentation. Z. Phys. A 277, 299 (1976). doi: 10.1007/BF01415605http://doi.org/10.1007/BF01415605
Z.Q. Feng, G.M. Jin, J.Q. Li et al., Formation of superheavy nuclei in cold fusion reactions. Phys. Rev. C 76, 044606 (2007). doi: 10.1103/PhysRevC.76.044606http://doi.org/10.1103/PhysRevC.76.044606
G.G. Adamian, N.V. Antonenko, W. Scheid, Characteristics of quasifission products within the dinuclear system model. Phys. Rev. C 68, 034601 (2003). doi: 10.1103/PhysRevC.68.034601http://doi.org/10.1103/PhysRevC.68.034601
Z.Q. Feng, Production of neutron-rich isotopes around N = 126 in multinucleon transfer reactions. Phys. Rev. C 95, 024615 (2017). doi: 10.1103/PhysRevC.95.024615http://doi.org/10.1103/PhysRevC.95.024615
G.G. Adamian, N.V. Antonenko, V.V. Sargsyan et al., Possibility of production of neutron-rich Zn and Ge isotopes in multinucleon transfer reactions at low energies. Phys. Rev. C 81, 024604 (2010). doi: 10.1103/PhysRevC.81.024604http://doi.org/10.1103/PhysRevC.81.024604
R.J. Charity, M.A. McMahan, G.J. Wozniak et al.,Systematics of complex fragment emission in niobium-induced reactions. Nucl. Phys. A 483, 371 (1988). doi: 10.1016/0375-9474(88)90542-8http://doi.org/10.1016/0375-9474(88)90542-8
W. Królas, R. Broda, B. Fornal et al., Dynamical deformation of nuclei in deep-inelastic collisions: A gamma coincidence study of 130Te + 275 MeV 64Ni and 208Pb + 345 MeV 58Ni heavy ion reactions. Nucl. Phys. A 832, 170 (2010). doi: 10.1016/j.nuclphysa.2009.10.159http://doi.org/10.1016/j.nuclphysa.2009.10.159
0
Views
0
Downloads
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution