M'hamed Salhi, Seddik El Hak Abaidia, Brahim Mohamedi, et al. Cooling enhancement of planar balanced magnetron cathode. [J]. Nuclear Science and Techniques 28(8):111(2017)
DOI:
M'hamed Salhi, Seddik El Hak Abaidia, Brahim Mohamedi, et al. Cooling enhancement of planar balanced magnetron cathode. [J]. Nuclear Science and Techniques 28(8):111(2017) DOI: 10.1007/s41365-017-0271-2.
Cooling enhancement of planar balanced magnetron cathode
摘要
Abstract
In physical vapor deposition (PVD) on a magnetron cathode, temperature of sensitive components must be kept under threshold limit, so as to ensure the cathode reliability, the process reproducibility, and the best quality of thin films. This can be achieved by an adequate design to enhance the dissipation of heat generated at the cathode. In this paper, temperature distribution and streamlines velocity of the cathode coolant inside a cathode magnetron are analyzed by using CFD solver ANSYS FLUENT in the single phase method in combination with ,k,-,ε, standards turbulent model. The results show that the design is appropriate under the calculation parameters, and for high heat densities some improvements are necessary to enhance heat dissipation and keep temperature under the threshold limit.
K. Wasa, S. Hayakawa, Handbook of Sputter Deposition Technology: Principles, Technology and Application. Park Ridge (New Jersey, USA), Noyes Publications, 1992.
P.J. Kelly, R.D. Arnell, Magnetron Sputtering: A review of recent developments and applications. Vacuum, 2000, 56(3): 159-172. Doi: 10.1016/S0042-207X(99)00189-Xhttp://doi.org/10.1016/S0042-207X(99)00189-X
S.M. Rossnagel, J.J. Cuomo, W.D. Westwood, Handbook of Plasma Processing Technology Fundamentals. Etching, Deposition and Surface Interactions, Park Ridge (New Jersey, USA), Noyes Publications, 1990.
C. Christou, Z.H. Barber, Ionization of Sputtered Material in a Planar Magnetro Discharge, J. Vac. Sci. Technol. 2000, 18(6): 2897-2907. DOI: 10.1116/1.1312370http://doi.org/10.1116/1.1312370
C.A Bishop, Magnetron Sputtering Source Design Options. In William Andrew Publishing.Vacuum Deposition Onto Webs, Films and Foils. Norwich, NY, 2015, 401-412.
A.S. Peter, R.K. Milan, A. Terry, US patent 5407551, Trumbly, Pleasant Hill. Planar Magnetron Sputtering Apparatus, 1995.
E.D. Richard, H. Manuel, M. San et al., US patent 5603816, Sputtering device and target with cover to hold cooling fluid, 1997.
Y. Kusumoto, Inverse problem in planar magnetron sputtering. J. Appl. Phys. 1997, 82(1388). DOI: 10.1063/1.366282http://doi.org/10.1063/1.366282
M.R. Lake, G.L. Harding, Cathode cooling apparatus for a planar magnetron sputtering system. J. Vac. Sci. Technol., 1984, A2: 1391. DOI: 10.1116/1.572372http://doi.org/10.1116/1.572372
H. Takatsuji, S. Tsuji, K. Kuroda et al., The influence of cooling water flowing in the sputtering target on aluminum based thin film nanostructure deposited on glass substrates. Thin Solid Films, 1999, 343(344): 465-468. DOI: 10.1016/S0040-6090(98)01677-0http://doi.org/10.1016/S0040-6090(98)01677-0
J.S. Baik, Y.J. Kim, A study of the Heat Transfer Enhancement in Magnetron Sputtering System. ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference, Volume 1 Vancouver, British Columbia, Canada, July 8-12, 2007. DOI: 10.1115/HT2007-32182http://doi.org/10.1115/HT2007-32182
R.P. Doerner, S.I. Krasheninnikov, K. Schmid, Particle-induced erosion of materials at elevated temperature. J. Appl. Phys., 2004, 95: 4471-4475. DOI: 10.1063/1.1687038http://doi.org/10.1063/1.1687038
A. Caillard, M. El’Mokh, N. Semmar et al., Energy Transferred From a Hot Nickel Target During Magnetron Sputtering. IEEE Transactions on Plasma Science, 2014, 42(10): 2802-2803. DOI: 10.1109/TPS.2014.2338742http://doi.org/10.1109/TPS.2014.2338742
M. Salhi, SE.H. Abaidia, Algeria patent 140171, Système de pulvérisation bi-cathodes magnétrons, 2014.
A. Shahmohammadi, A. Jafari, Application of different CFD multiphase models to investigate effects of baffles and nanoparticles on heat transfer enhancement. Front. Chem. Sci. Eng., 2014, 8(3): 320-329. DOI: 10.1007/s11705-014-1437-7http://doi.org/10.1007/s11705-014-1437-7
B. Mohamedi, S. Hanini, A. Ararem et al., Simulation of nucleate boiling under ANSYS-FLUENT code by using RPI model coupling with artificial neural networks. Nucl. Sci. Tech., 2015, 26 (4): 040601. DOI: 10.13538/j.1001-8042/nst.26.040601http://doi.org/10.13538/j.1001-8042/nst.26.040601