Qian-Qian Cheng, Yan-Zhong Yuan, Chun-Wang Ma, et al. Gamma measurement based on CMOS sensor and ARM microcontroller. [J]. Nuclear Science and Techniques 28(9):122(2017)
DOI:
Qian-Qian Cheng, Yan-Zhong Yuan, Chun-Wang Ma, et al. Gamma measurement based on CMOS sensor and ARM microcontroller. [J]. Nuclear Science and Techniques 28(9):122(2017) DOI: 10.1007/s41365-017-0276-x.
Gamma measurement based on CMOS sensor and ARM microcontroller
摘要
Abstract
A setup based on CMOS sensor and ARM microcontroller is designed to measure the γ-rays. STM32F103 is used as the main platform to control real-time on-line analysis of the image collected by the OV7670 CAMERACHIP ,TM, and send the image into the LCD at the desired frame rate. Accuracy of sampling interval can be regulated and controlled. The frame number of image is adjusted by STM32F103 to achieve better monitoring. Two methods are adopted to analyze the image data from the CMOS sensor. Although the CMOS sensor is of low efficiency for γ-ray detection, the results show that it is able to discriminate the ,60,Co γ-rays.
关键词
Keywords
CMOS image sensorγ ray detectionARM microcontrollerImage value processing
references
A.C. Konstantinidis, M.B. Szafraniec, R.D. Speller, et al. The Dexela 2923 CMOS X-ray detector: A flat panel detector based on CMOS active pixel sensors for medical imaging applications. Nucl Instru Meths in Phys. A, 689,12-21 (2012),. doi: 10.1016/j.nima.2012.06.024http://doi.org/10.1016/j.nima.2012.06.024
H.G. Kang, J.J. Song, K. Lee, et al. An investigation of medical radiation detection using CMOS image sensors in smartphones. Nucl Instru Meths in Phys. A, 823, 126-134 (2016). doi: 10.1016/j.nima.2016.04.007http://doi.org/10.1016/j.nima.2016.04.007
F. Wang, M. Y. Wang, Y. F. Liu, et al. Obtaining low energy γ dose with CMOS sensors. Nucl Sci Tech. 25, 060401(2014). doi: 10.13538/j.1001-8042/nst.25.060401http://doi.org/10.13538/j.1001-8042/nst.25.060401
F. Wang, M. Y. Wang, F. S. Tian, et al. Study on two-dimensional distribution of X-ray image based on improved Elman algorithm. Radiation Measurements. 77, 1-4 (2015). doi: 10.1016/j.radmeas.2015.03.012http://doi.org/10.1016/j.radmeas.2015.03.012
S. Tith, N. Chankow. Measurement of gamma-rays using smartphones. Open Journal of Applied Sciences, 6(01), 31 (2016). doi: 10.4236/ojapps.2016.61004http://doi.org/10.4236/ojapps.2016.61004
D. Whiteson, M. Mulhearn, C. Shimmin, et al. Searching for ultra-high energy cosmic rays with smartphones. Astroparticle Physics, 79, 1-9 (2016). doi: 10.1016/j.astropartphys.2016.02.002http://doi.org/10.1016/j.astropartphys.2016.02.002
Q.Y. Wei, R. Bai, Z.P. Wang,, et al. Surveying ionizing radiations in real time using a smartphone. Nuclear Science and Techniques, 28(5) 70 (2017). doi: 10.1007/s41365-017-0215-xhttp://doi.org/10.1007/s41365-017-0215-x
H. Wang, X. Li, Z. Li, et al. Image acquisition and display design based on OV7670. China Science and Technology Information, 11, 90-91(2013) (in Chinese). doi: 10.3969/j.issn.1001-8972.2013.11.045http://doi.org/10.3969/j.issn.1001-8972.2013.11.045
W. Kang, H. Li, F. Deng. Direct gray-scale extraction of topographic features for vein recognition. Science China Information Sciences, 53(10), 2062-2074(2010). doi: 10.1007/s11432-010-4064-zhttp://doi.org/10.1007/s11432-010-4064-z
J.C. Russ. The image processing handbook. CRC press(2016)
C. Shi, W. Ma, Y. Wang, et al. Experimental study on decay law of γ-ray in explosive columns. Nuclear Electronics & Detection Technology, 23(6), 522-525 (2003)(in Chinese). doi: 10.3969/j.issn.0258-0934.2003.06.007http://doi.org/10.3969/j.issn.0258-0934.2003.06.007
N. Iyomoto, H. Kawakami, K. Maehata, et al. Gamma-ray transition-edge sensor microcalorimeters on solid substrates. Journal of Low Temperature Physics, 82-87 (2016). doi: 10.1007/s10909-016-1538-4http://doi.org/10.1007/s10909-016-1538-4
M.A. Karami. Deep-submicron CMOS single photon detectors and quantum effects. TU Delft, Delft University of Technology (2011)