Hong-Fei Liu, Peng Ge, Sheng-Peng Yu, et al. Data decomposition method for full-core Monte Carlo transport–burnup calculation. [J]. Nuclear Science and Techniques 29(2):20(2018)
DOI:
Hong-Fei Liu, Peng Ge, Sheng-Peng Yu, et al. Data decomposition method for full-core Monte Carlo transport–burnup calculation. [J]. Nuclear Science and Techniques 29(2):20(2018) DOI: 10.1007/s41365-018-0366-4.
Data decomposition method for full-core Monte Carlo transport–burnup calculation
摘要
Abstract
Monte Carlo transport simulations of a full core reactor with a high-fidelity structure have been made possible by modern-day computing capabilities. Performing transport–burnup calculations of a full core model typically includes millions of burnup areas requiring hundreds of gigabytes of memory for burnup related tallies. This paper presents the study of a parallel computing method for full-core Monte Carlo transport–burnup calculations and the development of a thread-level data decomposition method. The proposed method decomposes tally accumulators into different threads and improves the parallel communication pattern and memory access efficiency. A typical PWR(Pressurized Water Reactor) burnup assembly along with the BEAVRS(Benchmark for Evaluation And Validation of Reactor Simulations) model was used to test the proposed method. The result indicates that the method effectively reduces memory consumption and maintains high parallel efficiency.
关键词
Keywords
Monte CarloBurnup CalculationData DecompositionBEAVRSSuperMC
references
N. Horelik, B. Herman, B. Forget et al., Benchmark for evaluation and validation of reactor simulations (BEAVRS), International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering(M&C2013), Sun Valley, USA, May.5-9, 2013.
K. Smith, B. Forget, Challenges in the development of high-fidelity LWR core neutronics tools, International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering(M&C2013), Sun Valley, USA, May.5-9, 2013.
P. K. Romano, B. Forget, The OpenMC Monte Carlo particle transport code. Ann. Nucl. Energy 51: 274-281 (2013). doi: 10.1016/j.anucene.2012.06.040http://doi.org/10.1016/j.anucene.2012.06.040
G. LI, Study and application of parallel geometric region decomposition parallel algorithm for Monte Carlo particle transport. Ph.D. Thesis, China Academy of Engineering Physics, 2014.
P. K. Romano, A. R. Siegel, B. Forget et al., Data decomposition of Monte Carlo particle transport simulations via tally servers. J. Comput. Phys. 252: 20-36 (2013). doi: 10.1016/j.jcp.2013.06.011http://doi.org/10.1016/j.jcp.2013.06.011
P. K. Romano, B. Forget, K. Smith et al., On the use of tally servers in Monte Carlo simulations of light-water reactors, International Conference Mathematics and Computation, Supercomputing in Nuclear Applications and the Monte Carlo Method(SNA+MC2013), Paris, France, Oct.27-71, 2013.
J. G. Liang, Research on Data Parallel Methods for Large-Scale Calculations with Reactor Monte Carlo Code RMC. Ph.D. Thesis, Tsinghua University, 2015.
C. M. Luo, S. Q. Tian, K. Wang et al., Parallelizing AT with open multi-processing and MPI. Nucl. Sci. Tech. 26(3): 030104 (2015). doi: 10.13538/j.1001-8042/nst.26.030104http://doi.org/10.13538/j.1001-8042/nst.26.030104
P. David, R. Brian, P. Dobreff et al., Strategies and Algorithms for Hybrid shared-memory/Message-Passing Parallelism in Monte Carlo Radiation Transport Code, International Conference Mathematics and Computation, Supercomputing in Nuclear Applications and the Monte Carlo Method(SNA+MC2015), Nashville, USA. Apr.19-23, 2015.
Y. Wu, J. Song, H. Zheng et al., CAD-Based Monte Carlo Program for Integrated Simulation of Nuclear System SuperMC. Ann. Nucl. Energy 82:161-168 (2015). doi: 10.1016/j.anucene.2014.08.058http://doi.org/10.1016/j.anucene.2014.08.058
Y. Wu, FDS Team, CAD-Based Interface Programs for Fusion Neutron Transport Simulation. Fusion Eng. Des. 84(7): 1987-1992 (2009). doi: 10.1016/j.fusengdes.2008.12.041http://doi.org/10.1016/j.fusengdes.2008.12.041
Y. Wu, Z. Chen, L. Hu et al., Identification of safety gaps for fusion demonstration reactors. Nat. Energy 1: 16154 (2016). doi: 10.1038/nenergy.2016.154http://doi.org/10.1038/nenergy.2016.154
Y. Wu, J. Jiang, M. Wang et al., A Fusion-Driven Subcritical System Concept Based on Viable Technologies. Nucl. Fusion 51: 103036 (2011). doi: 10.1088/0029-5515/51/10/103036http://doi.org/10.1088/0029-5515/51/10/103036
Y. Wu, FDS Team, Design Analysis of the China Dual-Functional Lithium Lead (DFLL) Test Blanket Module in ITER. Fusion Eng. Des. 82: 1893-1903 (2007). doi: 10.1016/j.fusengdes.2007.08.012http://doi.org/10.1016/j.fusengdes.2007.08.012
Message Passing Interface Forum, MPI: A Message-Passing Interface Standard. Version 3.0. http://mpi-forum.org/docs/mpi-3.0/mpi30-report.pdfhttp://mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
B. Chapman, G. Jost, R. Van Der Pas, Using OpenMP: portable shared memory parallel programming. MIT press, 2008.
Z. Xu, Design Strategies for Optimizing High Burnup Fuel in Pressurized Water Reactors. Ph.D. Thesis, Massachusetts Institute of Technology, 2013.
M. D. DeHart, C. V. Parks, M. C. Brady, OECD/NEA burnup credit calculational criticality benchmark phase IB results. Oak Ridge National Laboratory USA, ORNL-6901, 1996.
J. Leppänen, R. Mattila, Validation of the Serpent-ARES code sequence using the MIT BEAVRS benchmark-HFP conditions and fuel cycle 1 simulations. Ann. Nucl. Energy 96: 324-331 (2016). doi: 10.1016/j.anucene.2016.06.014http://doi.org/10.1016/j.anucene.2016.06.014
D. J. Kelly, B. N. Aviles, P. K. Romano et al., Analysis of Select BEAVRS PWR Benchmark Cycle 1 Results Using MC21 And OpenMC. The Physics of Reactors Conference (PHYSOR2014), Kyoto, Japan, Sept.28-Oct.3, 2015.
An algorithm for Monte Carlo simulation of bremsstrahlung emission by electrons
Hi’CT: a pixel sensor-based device for ion tomography
Parallel computing approach for efficient 3-D X-ray-simulated image reconstruction
Assessment of the induced radioactivity in the treatment room of the Heavy Ion Medical Machine in Wuwei using PHITS
Monte Carlo simulation for performance evaluation of detector model with a monolithic LaBr3(Ce) crystal and SiPM array for γ radiation imaging
Related Author
No data
Related Institution
School of Nuclear Science and Technology, University of Science and Technology of China
Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
Advanced Energy Science and Technology Guangdong Laboratory
School of Nuclear Science and Technology, University of Chinese Academy of Sciences
Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College