Design of detector to monitor the Bragg peak location of carbon ions by means of prompt γ-ray measurements with Geant4
NUCLEAR ELECTRONICS AND INSTRUMENTATION|Updated:2021-02-07
|
Design of detector to monitor the Bragg peak location of carbon ions by means of prompt γ-ray measurements with Geant4
Nuclear Science and TechniquesVol. 29, Issue 4, Article number: 48(2018)
Affiliations:
1.PLAC, Key Laboratory of Quark & Lepton Physics (MOE), Department of Physics Science and Technology, Central China Normal University, Hubei 430079, China
Yan Fan, Guang-Ming Huang, Xiang-Ming Sun, et al. Design of detector to monitor the Bragg peak location of carbon ions by means of prompt γ-ray measurements with Geant4. [J]. Nuclear Science and Techniques 29(4):48(2018)
DOI:
Yan Fan, Guang-Ming Huang, Xiang-Ming Sun, et al. Design of detector to monitor the Bragg peak location of carbon ions by means of prompt γ-ray measurements with Geant4. [J]. Nuclear Science and Techniques 29(4):48(2018) DOI: 10.1007/s41365-018-0388-y.
Design of detector to monitor the Bragg peak location of carbon ions by means of prompt γ-ray measurements with Geant4
摘要
Abstract
Real-time monitoring of the Bragg peak location of carbon ions is urgently required for the quality control of hadron therapy. In this study, we design an annular detector to monitor the Bragg peak location of carbon ions with Geant4 simulation. This 360° surrounding structure has a high detection efficiency for the small-dose situation. The detector consists of a multi-layered collimator system and an NaI scintillator for prompt gamma counting. The multi-layered collimator includes a lead layer to prevent unwanted gammas and the paraffin and boron carbide layers to moderate and capture fast neutrons. An inclination of the detector further diminishes the background signal caused by neutrons. The detector, with optimized parameters, is applicable to carbon ions of different energies. In addition, the scintillator is replaced by an improved EJ301 organic liquid scintillator to discriminate gammas and neutrons. Inserting thin Fe slices into the liquid scintillator improves the energy deposition efficiency. The Bragg peak location of 200 MeV/u carbon ions can be monitored by prompt gamma detection with the improved liquid scintillator.
关键词
Keywords
Bragg peakcarbon ionprompt γ-rayGeant4
references
G. Kraft, Tumortherapy with ion beams, Nucl. Instrum. Meth. A 454 1-10 (2000). doi: 10.1016/S0168-9002(00)00802-0http://doi.org/10.1016/S0168-9002(00)00802-0
U. Amaldi, G. Kraft, Radiotherapy with beams of carbon ions, Rep. Prog. Phys. 68 1861-1882 (2005). doi: 10.1088/0034-4885/68/8/R04http://doi.org/10.1088/0034-4885/68/8/R04
G. Kraft, Ion beam therapy in Europe, APPLICATION OF ACCELERATORS IN RESEARCH AND INDUSTRY: Twentieth International Conference. AIP Conference Proceedings, 1099 429-434 (2009). doi: 10.1063/1.3120066http://doi.org/10.1063/1.3120066
C. H. Min, C. H. Kim, M. Y. Youn, et al., Prompt gamma measurements for locating the dose falloff region in the proton therapy, Appl. Phys. Lett. 89 183517 (2006). doi: 10.1063/1.2378561http://doi.org/10.1063/1.2378561
J. C. Polff, S. Peterson, M. McCleskey, et al., Measurement and calculation of characteristic prompt gamma ray spectra during proton irradiation, Phys. Med. Biol. 54 519-527 (2009). doi: 10.1088/0031-9155/54/22/N02http://doi.org/10.1088/0031-9155/54/22/N02
E. Testa, M. Bajard, M. Chevallier, et al., Monitoring the Bragg peak location of 73 MeV/u carbon ions by means of prompt gamma-ray measurements, Appl. Phys. Lett., 93 093506 (2008). doi: 10.1063/1.2975841http://doi.org/10.1063/1.2975841
E. Testa, M. Bajard, M. Chevallier, et al., Dose profile monitoring with carbon ions by means of prompt-gamma measurements, Nucl. Instrum. Meth. B 267 993-996 (2009). doi: 10.1016/j.nimb.2009.02.031http://doi.org/10.1016/j.nimb.2009.02.031
E. Testa, M. Bajard, M. Chevallier, et al., Real-time monitoring of the Bragg-peak position in ion therapy by means of single photon detection, Radiat. Environ. Biophys. 49 337-343 (2010). doi: 10.1007/s00411-010-0276-2http://doi.org/10.1007/s00411-010-0276-2
S. Chauvie, S. Guatelli, V. Ivanchenko, et al., Geant4 Low Energy Electromagnetic Physics, in Conf. Rec. 2004 IEEE Nucl. Sci. Symp. 3, 1881-1885 (2004). doi: 10.1109/NSSMIC.2004.1462612http://doi.org/10.1109/NSSMIC.2004.1462612
J.P. Wellisch, Hadronic shower models in Geant4 - the frameworks, Comp. Phys. Comm. 140 65-75 (2001). doi: 10.1016/S0010-4655(01)00256-9http://doi.org/10.1016/S0010-4655(01)00256-9
G.A.P. Cirrone, G. Cuttone, F. D. Rosa, et al., Validation of Geant4 Physics Models for the Simulation of the Proton Bragg Peak, in Conf. Rec. 2006 IEEE Nuc. Sci. Symp. N22-2 788-792 (2006). doi: 10.1109/NSSMIC.2006.355969http://doi.org/10.1109/NSSMIC.2006.355969
D. Schardt, Tumor therapy with high-energy carbon ion beams, Nucl. Phys. A, 787 633-641 (2007). doi: 10.1016/j.nuclphysa.2006.12.097http://doi.org/10.1016/j.nuclphysa.2006.12.097
C. H. Min, J. G. Park, S. H. An, et al., Determination of optimal energy window for measurement of prompt gammas from proton beam by Monte Carlo simulations, J. Nucl. Sci. Tech., 45 28-31 (2014) doi: 10.1080/00223131.2008.10875777http://doi.org/10.1080/00223131.2008.10875777
L. Chang,Y. Liu, D. Long, et al., Pulse shape discrimination and energy calibration of EJ301 liquid scintillation detector, Nucl. Tech., 38 1-6 (2015). doi: 10.11889/j.0253-3219.2015.hjs.38.020501http://doi.org/10.11889/j.0253-3219.2015.hjs.38.020501 (in Chinese)
S.Y.L.T. Zhang, Z. Q. Chen, R. Han, Study on gamma response function of EJ301 orgainc liquid scintillator with GEANT4 and FLUKA, Chinese Phys. C, 37126003 (2013). doi: 10.1088/1674-1137/37/12/126003http://doi.org/10.1088/1674-1137/37/12/126003
J. Wu, Y. Q. Liu, T. Y. Ma, et al., GATE simulation based feasibility studies of in-beam PET monitoring in 12C beam cancer therapy, Nucl. Sci. Tech., 21 275-280 (2010). doi: 10.13538/j.1001-8042/nst.21.275-280http://doi.org/10.13538/j.1001-8042/nst.21.275-280
Q. Y. Wei, T. P. Xu, T. T. Dai, et al., Development of a compact DOI-TOF detector module for high-performance PET systems, Nucl. Sci. Tech., 28 43 (2017). doi: 10.1007/s41365-017-0202-2http://doi.org/10.1007/s41365-017-0202-2
M.A. Piliero, N. Belcari, M.G. Bisogni, et al., First results of the INSIDE in-beam PET scanner for the on-line monitoring of particle therapy treatments, J. Instrum., 11 C12011 (2016). doi: 10.1088/1748-0221/11/12/C12011http://doi.org/10.1088/1748-0221/11/12/C12011