1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.ShanghaiTech University, Shanghai 200031, China
chenjinhui@sinap.ac.cn,
ygma@sinap.ac.cn
Scan for full text
Xiao-Hai Jin, Jin-Hui Chen, Yu-Gang Ma, et al.
Xiao-Hai Jin, Jin-Hui Chen, Yu-Gang Ma, et al.
The ,Ω, and ,ϕ, production in relativistic heavy-ion collisions is studied in a dynamical quark coalescence model using the phase space information of strange quarks from a multiphase transport (AMPT) model. Enhanced local parton density fluctuation is implemented in the AMPT to simulate the QCD phase transition dynamics. By studying the transverse momentum ,p,T, spectra and the elliptic flow of the multi-strangeness particles, such as,Ω, and ,ϕ, and the ,Ω,/,ϕ, ratio as a function of ,p,T, in the AMPT, we find that the new development improves the description of experimental data. The study motivates further experimental investigations of ,Ω, and ,ϕ, production in Phase-II of the Beam Energy Scan program at RHIC.
QCD phase transitionmulti-strangeness particleselliptic flowAMPT
M. M. Aggarwal et al., arXiv:1007.2613
Y. Aoki, G. Endrodi, Z. Fodor, et al., The order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 443, 675 (2006). doi: 10.1038/nature05120http://doi.org/10.1038/nature05120
P. de Forcrand, O. Philipsen, The QCD phase diagram for small densities from imaginary chemical potential. Nucl. Phys. B 642, 290 (2002). doi: 10.1016/S0550-3213(02)00626-0http://doi.org/10.1016/S0550-3213(02)00626-0
Z. Fodor, S. D. Katz, Critical point of QCD at finite T and μ, lattice results for physical quark masses. J. High Energy Phys. 4, 50 (2004). doi: 10.1088/1126-6708/2004/04/050http://doi.org/10.1088/1126-6708/2004/04/050
G.Y. Shao, X. Y. Gao, Z. D. Tang, et al., QCD phase diagram with the improved Polyakov loop effective potential. Nucl. Sci. Tech. 27, 151 (2016). doi: 10.1007/s41365-016-0152-0http://doi.org/10.1007/s41365-016-0152-0
L. Adamczyk et al. (STAR Collaboration), Energy Dependence of Moments of Net-Proton Multiplicity Distributions at RHIC. Phys. Rev. Lett. 112, 032302 (2014). doi: 10.1103/PhysRevLett.112.032302http://doi.org/10.1103/PhysRevLett.112.032302
L. Adamczyk et al. (STAR Collaboration), Beam Energy Dependence of Moments of the Net-Charge Multiplicity Distributions in Au + Au Collisions at RHIC. Phys. Rev. Lett. 113, 092301 (2014). doi: 10.1103/PhysRevLett.113.092301http://doi.org/10.1103/PhysRevLett.113.092301
L. Adamczyk et al. (STAR Collaboration), Energy dependence of Kπ, pπ and Kp fluctuations in Au + Au collisions from = 7.7 to 200 GeV. Phys. Rev. C 92, 021901(R) (2015). doi: 10.1103/PhysRevC.92.021901http://doi.org/10.1103/PhysRevC.92.021901
X. F. Luo, N. Xu, Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC. Nucl. Sci. Tech. 28, 112 (2017). doi: 10.1007/s41365-017-0257-0http://doi.org/10.1007/s41365-017-0257-0
J. Steinhermer, J. Randrup, Spinodal density enhancements in simulations of relativistic nuclear collisions. Phys. Rev. C 87, 054903 (2013). doi: 10.1103/PhysRevC.87.054903http://doi.org/10.1103/PhysRevC.87.054903
J. Steinhermer, J. Randrup, V. Koch, Non-equilibrium phase transition in relativistic nuclear collisions: Importance of the equation of state. Phys. Rev. C 89, 034901 (2014). doi: 10.1103/PhysRevC.89.034901http://doi.org/10.1103/PhysRevC.89.034901
F. Li, C. M. Ko, Spinodal instabilities of baryon-rich quark-gluon plasma in the Polyakov-Nambu-Jona-Lasinio model. Phys. Rev. C 93, 035205 (2016). doi: 10.1103/PhysRevC.93.035205http://doi.org/10.1103/PhysRevC.93.035205
C. M. Ko, F. Li, Density fluctuations in baryon-rich quark matter. Nucl. Sci. Tech. 27, 140 (2016). doi: 10.1007/s41365-016-0141-3http://doi.org/10.1007/s41365-016-0141-3
F. Li and C. M. Ko, Spinodal instabilities of baryon-rich quark matter in heavy ion collisions. Phys. Rev. C 95, 055203 (2017). doi: 10.1103/PhysRevC.95.055203http://doi.org/10.1103/PhysRevC.95.055203
K. J. Sun, L. W. Chen, C. M. Ko et al., Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions. Phys. Lett. B 774, 103 (2017). doi: 10.1016/j.physletb.2017.09.056http://doi.org/10.1016/j.physletb.2017.09.056
L. Adamczyk, et al. (STAR Collaboration), Beam-Energy Dependence of the Directed Flow of Protons, Antiprotons, and Pions in Au + Au Collisions. Phys. Rev. Lett. 112, 162301 (2014). doi: 10.1103/PhysRevLett.112.162301http://doi.org/10.1103/PhysRevLett.112.162301
S. V. Afanasiev et al. (NA49 Collaboration), Energy dependence of pion and kaon production in central Pb + Pb collisions. Phys. Rev. C 66, 054902 (2002). doi: 10.1103/PhysRevC.66.054902http://doi.org/10.1103/PhysRevC.66.054902
C. Alt et al. (NA49 Collaboration), Pion and kaon production in central Pb + Pb collisions at 20A and 30A GeV:Evidence for the onset of deconfinement. Phys. Rev. C 77, 024903 (2008). doi: 10.1103/PhysRevC.77.024903http://doi.org/10.1103/PhysRevC.77.024903
J. Adams et al. (STAR Collaboration), Scaling Properties of Hyperon Production in Au + Au Collisions at = 200 GeV. Phys. Rev. Lett. 98, 062301 (2007). doi: 10.1103/PhysRevLett.98.062301http://doi.org/10.1103/PhysRevLett.98.062301
B.I. Abelev et al. (STAR Collaboration), Energy and system size dependence of ϕ meson production in Cu + Cu and Au + Au collisions. Phys. Lett. B 673, 183 (2009). doi: 10.1016/j.physletb.2009.02.037http://doi.org/10.1016/j.physletb.2009.02.037
B. I. Abelev et al. (STAR Collaboration), Observation of an Antimatter Hypernucleus. Science 328, 58 (2010). doi: 10.1126/science.1183980http://doi.org/10.1126/science.1183980
S. Zhang, J. H. Chen, D. Keane, et al., Searching for onset of deconfinement via hypernuclei and baryon-strangeness correlations. Phys. Lett. B 684, 224 (2010). doi: 10.1016/j.physletb.2010.01.034http://doi.org/10.1016/j.physletb.2010.01.034
P. Liu, J. H. Chen, Y. G. Ma, et al., Production of light nuclei and hypernuclei at High Intensity Accelerator Facility energy region. Nucl. Sci. Tech. 28, 55 (2017). doi: 10.1007/s41365-017-0207-xhttp://doi.org/10.1007/s41365-017-0207-x
K. Hattori, X. G. Huang, Novel quantum phenomena induced by strong magnetic fields in heavy-ion collisions. Nucl. Sci. Tech. 28, 26 (2017). doi: 10.1007/s41365-016-0178-3http://doi.org/10.1007/s41365-016-0178-3
J. Tian, J. H. Chen, Y. G. Ma et al., Breaking of the number-of-constituent-quark scaling for identified-particle elliptic flow as a signal of phase change in low-energy data taken at the BNL Relativistic Heavy Ion Collider (RHIC). Phys. Rev. C 79, 067901 (2009). doi: 10.1103/PhysRevC.79.067901http://doi.org/10.1103/PhysRevC.79.067901
L. Adamczyk et al. (STAR Collaboration), Observation of an Energy-Dependent Difference in Elliptic Flow between Particles and Antiparticles in Relativistic Heavy Ion Collisions. Phys. Rev. Lett. 110, 142301 (2013). doi: 10.1103/PhysRevLett.110.142301http://doi.org/10.1103/PhysRevLett.110.142301
L. Adamczyk et al. (STAR Collaboration), Centrality and Transverse Momentum Dependence of Elliptic Flow of Multistrange Hadrons and ϕ Meson in Au + Au Collisions at = 200 GeV. Phys. Rev. Lett. 116, 062301 (2016). doi: 10.1103/PhysRevLett.116.062301http://doi.org/10.1103/PhysRevLett.116.062301
L. Adamczyk, et al. (STAR Collaboration), Probing parton dynamics of QCD matter with Ω and ϕ production. Phys. Rev. C 93, 021903(R) (2016). doi: 10.1103/PhysRevC.93.021903http://doi.org/10.1103/PhysRevC.93.021903
J.H. Chen, F. Jin, D. Gangadharan, et al., Parton distributions at hadronization from bulk dense matter produced in Au + Au collisions at = 200 GeV. Phys. Rev. C 78, 034907 (2008). doi: 10.1103/PhysRevC.78.034907http://doi.org/10.1103/PhysRevC.78.034907
Y. J. Ye, J. H. Chen, Y. G. Ma, et al., Ω and ϕ in Au+Au collisions at = 200 and 11.5 GeV from a multiphase transport model. Chin. Phys. C 41, 084101 (2017). doi: 10.1088/1674-1137/41/8/084101http://doi.org/10.1088/1674-1137/41/8/084101
H. van Hecke, H. Sorge, N. Xu, Evidence of Early Multistrange Hadron Freeze-Out in High Energy Nuclear Collisions. Phys. Rev. Lett. 81, 5764 (1998). doi: 10.1103/PhysRevLett.81.5764http://doi.org/10.1103/PhysRevLett.81.5764
A. Shor, ϕ-Meson Production as a Probe of the Quark-Gluon Plasma. Phys. Rev. Lett. 54, 1122 (1985). doi: 10.1103/PhysRevLett.54.1122http://doi.org/10.1103/PhysRevLett.54.1122
Y. C. He, Z. W. Lin, Improved quark coalescence for a multi-phase transport model. Phys. Rev. C 96, 014910 (2017). doi: 10.1103/PhysRevC.96.014910http://doi.org/10.1103/PhysRevC.96.014910
L. W. Chen, C. M. Ko, ϕ and Ω production in relativistic heavy-ion collisions in a dynamical quark coalescence model. Phys. Rev. C 73, 044903 (2006). doi: 10.1103/PhysRevC.73.044903http://doi.org/10.1103/PhysRevC.73.044903
L. W. Chen, C. M. Ko, W. Liu, et al., PoS (CPOD 2009) 034
Z. W. Lin, C. M. Ko, B. A. Li, et al., Multiphase transport model for relativistic heavy ion collisions. Phys. Rev. C 72, 064901 (2005). doi: 10.1103/PhysRevC.72.064901http://doi.org/10.1103/PhysRevC.72.064901
A. Bzdak, G. L. Ma, Elliptic and Triangular Flow in p-Pb and Peripheral Pb-Pb Collisions from Parton Scatterings. Phys. Rev. Lett. 113, 252301 (2014). doi: 10.1103/PhysRevLett.113.252301http://doi.org/10.1103/PhysRevLett.113.252301
Z. W. Lin, Evolution of transverse flow and effective temperatures in the parton phase from a multiphase transport model. Phys. Rev. C 90, 014904 (2014). doi: 10.1103/PhysRevC.90.014904http://doi.org/10.1103/PhysRevC.90.014904
Z. W. Lin, C. M. Ko, S. Pal, Partonic Effects on Pion Interferometry at the Relativistic Heavy-Ion Collider. Phys. Rev. Lett. 89, 152301 (2002). doi: 10.1103/PhysRevLett.89.152301http://doi.org/10.1103/PhysRevLett.89.152301
X. N. Wang, Role of multiple minijets in high-energy hadronic reactions. Phys. Rev. D 43, 104 (1991). doi: 10.1103/PhysRevD.43.104http://doi.org/10.1103/PhysRevD.43.104
X. N. Wang, M. Gyulassy, hijing: A Monte Carlo model for multiple jet production in pp, pA, and AA collisions. Phys. Rev. D 44, 3501 (1991). doi: 10.1103/PhysRevD.44.3501http://doi.org/10.1103/PhysRevD.44.3501
B. Zhang, ZPC 1.0.1: a parton cascade for ultrarelativistic heavy ion collisions. Comput. Phys. Commun. 109, 193 (1998). doi: 10.1016/S0010-4655(98)00010-1http://doi.org/10.1016/S0010-4655(98)00010-1
B. A. Li and C. M. Ko, Formation of superdense hadronic matter in high energy heavy-ion collisions. Phys. Rev. C 52, 2037 (1995). doi: 10.1103/PhysRevC.52.2037http://doi.org/10.1103/PhysRevC.52.2037
B. A. Li, A. T. Sustich, B. Zhang, et al., Studies of superdense hadronic matter in a relativistic transport model. Int. J. Mod. Phys. E 10, 267 (2001). doi: 10.1142/S0218301301000575http://doi.org/10.1142/S0218301301000575
Z. W. Lin and C. M. Ko, Partonic effects on the elliptic flow at relativistic heavy ion collisions. Phys. Rev. C 65, 034904 (2002). doi: 10.1103/PhysRevC.65.034904http://doi.org/10.1103/PhysRevC.65.034904
R. Mattiello, A. Jahns, H. Sorge, H. Stocker and W. Greiner, Deuteron Flow in Ultrarelativistic Heavy Ion Reactions. Phys. Rev. Lett. 74, 2180 (1995). doi: 10.1103/PhysRevLett.74.2180http://doi.org/10.1103/PhysRevLett.74.2180
J. Ollitrault, Flow systematics from SIS to SPS energies. Nucl. Phys. A 638, 195 (1998). doi: 10.1016/S0375-9474(98)00413-8http://doi.org/10.1016/S0375-9474(98)00413-8
U. Heinz, R. Snellings, Collective Flow and Viscosity in Relativistic Heavy-Ion Collisions. Annu. Rev. Nucl. Part. Sci. 63, 123 (2013). doi: 10.1146/annurev-nucl-102212-170540http://doi.org/10.1146/annurev-nucl-102212-170540
L. Ma, G. L. Ma, Y. G. Ma, Anisotropic flow and flow fluctuations for Au + Au at = 200 GeV in a multiphase transport model. Phys. Rev. C 89, 044907 (2014). doi: 10.1103/PhysRevC.89.044907http://doi.org/10.1103/PhysRevC.89.044907
L. Adamczyk et al. (STAR Collaboration), Centrality dependence of identified particle elliptic flow in relativistic heavy ion collisions at = 7.7-62.4 GeV. Phys. Rev. C 93, 014907 (2016). doi: 10.1103/PhysRevC.93.014907http://doi.org/10.1103/PhysRevC.93.014907
B. Alver, G. Roland, Collision-geometry fluctuations and triangular flow in heavy-ion collisions. Phys. Rev. C 81, 054905, 2010. doi: 10.1103/PhysRevC.81.054905;http://doi.org/10.1103/PhysRevC.81.054905;
Erratum: Collision-geometry fluctuations and triangular flow in heavy-ion collisions. Phys. Rev. C 82, 039903 (2010). doi: 10.1103/PhysRevC.82.039903http://doi.org/10.1103/PhysRevC.82.039903
S. Zhang, Y. G. Ma, J. H. Chen, et al., Nuclear cluster structure effect on elliptic and triangular flows in heavy-ion collisions. Phys. Rev. C 95, 064904 (2017). doi: 10.1103/PhysRevC.95.064904http://doi.org/10.1103/PhysRevC.95.064904
0
Views
0
Downloads
5
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution