1.Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610065, China
2.Nuclear Power Institute of China, Chengdu 610041, China
Corresponding author, wyuan@scu.edu.cnYuan Wang
Corresponding author, gongbin_npic@163.com Bin Gong
Scan for full text
Jin-Hua Liu, Yue-Ming Tan, Yuan Wang, et al. Stress corrosion cracking behavior of 310S in supercritical water with different oxygen concentrations. [J]. Nuclear Science and Techniques 29(5):76(2018)
Jin-Hua Liu, Yue-Ming Tan, Yuan Wang, et al. Stress corrosion cracking behavior of 310S in supercritical water with different oxygen concentrations. [J]. Nuclear Science and Techniques 29(5):76(2018) DOI: 10.1007/s41365-018-0405-1.
The effect of dissolved oxygen (DO) on the stress corrosion cracking (SCC) of 310S in supercritical water was investigated using slow strain-rate tensile tests. The tensile properties, fracture morphology, and distribution of the chemical composition of the oxide were analyzed to evaluate the SCC susceptibility of 310S. The results showed that the rupture elongation decreased significantly as the degree of DO increased. A brittle fracture mode was observed on the fracture surface, and only intergranular cracking was observed on the surface of the gauge section, regardless of the DO. Cracks were widely distributed on the gauge surface near the fracture surface. Oxides were observed in the cracks with two-layered structures, i.e., a Cr-rich inner oxide layer and an Fe-rich outer oxide layer.
Supercritical waterDissolved oxygenStress corrosion crackingAustenitic stainless steelsEPMA
T. Schulenberg, L.K.H. Leung, Y. Oka, Review of R&D for supercritical water cooled reactors. Prog. Nucl. Energy. 77, 282-299 (2014). doi: 10.1016/j.pnucene.2014.02.021http://doi.org/10.1016/j.pnucene.2014.02.021
D. Guzonas, R. Novotny, Supercritical water-cooled reactor materials - Summary of research and open issues. Prog. Nucl. Energy. 77, 361-372 (2014). doi: 10.1016/j.pnucene.2014.02.008http://doi.org/10.1016/j.pnucene.2014.02.008
C.W. Sun, R. Hui, W. Qu et al., Progress in corrosion resistant materials for supercritical water reactors. Corr. Sci. 51(11), 2508-2523 (2009). doi: 10.1016/j.corsci.2009.07.007http://doi.org/10.1016/j.corsci.2009.07.007
K.J. Yin, S.Y. Qiu, R. Tang et al., Corrosion behavior of ferritic/martensitic steel P92 in supercritical water. J. Supercrit. Fluids. 50(3), 235-239 (2009). doi: 10.1016/j.supflu.2009.06.019http://doi.org/10.1016/j.supflu.2009.06.019
R.S. Zhou, E.A. West, Z.J. Jiao et al., Irradiation-assisted stress corrosion cracking of austenitic alloys in supercritical water. J. Nucl. Mater. 395, 11-22 (2009). doi: 10.1016/j.jnucmat.2009.09.010http://doi.org/10.1016/j.jnucmat.2009.09.010
A. Sáez-Maderuelo, D. Gómez-Briceño, Stress corrosion cracking behavior of annealed and cold worked 316L stainless steel in supercritical water. Nucl. Eng. Des. 307, 30-38 (2016). doi: 10.1016/j.nucengdes.2016.06.022http://doi.org/10.1016/j.nucengdes.2016.06.022
G.S. Was, P. Ampornrata, G. Gupta et al., Corrosion and stress corrosion cracking in supercritical water. J. Nucl. Mater. 371, 176-201 (2007). doi: 10.1016/j.jnucmat.2007.05.017http://doi.org/10.1016/j.jnucmat.2007.05.017
P. Ampornrat, G. Gupta, G.S. Was, Tensile and stress corrosion cracking behavior of ferritic-martensitic steels in supercritical water. J. Nucl. Mater. 395(1), 30-36 (2009). doi: 10.1016/j.jnucmat.2009.09.012http://doi.org/10.1016/j.jnucmat.2009.09.012
S.X. Jin, L.P. Guo, Z. Yang et al., Microstructural evolution of P92 ferritic/martensitic steel under argon ion irradiation. Mater Charact. 62(1), 136-142 (2011). doi: 10.1016/j.matchar.2010.11.015http://doi.org/10.1016/j.matchar.2010.11.015
L.F. Zhang, Y.C. Bao, R. Tang, Selection and corrosion evaluation tests of candidate SCWR fuel cladding materials. Nucl. Eng. Des. 249, 180-187 (2012). doi: 10.1016/j.nucengdes.2011.08.086http://doi.org/10.1016/j.nucengdes.2011.08.086
Y. Xie, Y.Q. Wu, J. Burns et al., Characterization of stress corrosion cracks in Ni-based weld alloys 52, 52M and 152 grown in high-temperature water. Mater Charact. 112, 87-97 (2016). doi: 10.1016/j.matchar.2015.12.005http://doi.org/10.1016/j.matchar.2015.12.005
N. Muthukumar, J.H. Lee, A. Kimura, SCC behavior of austenitic and martensitic steels in supercritical pressurized water, J. Nucl. Mater. 417(1), 1221-1224 (2011). doi: 10.1016/j.jnucmat.2011.02.033http://doi.org/10.1016/j.jnucmat.2011.02.033
Y. Miwa, S. Jitsukawa, T. Tsukada, Stress corrosion cracking susceptibility of a reduced-activation martensitic steel F82H. J. Nucl. Mater. 386, 703-707 (2009). doi: 10.1016/j.jnucmat.2008.12.332http://doi.org/10.1016/j.jnucmat.2008.12.332
S.S. Hwang, B.H. Lee, J.G. Kim et al., SCC and corrosion evaluations of the F/M steels for a supercritical water reactor. J. Nucl. Mater. 372(2), 177-181 (2008). doi: 10.1016/j.jnucmat.2007.03.168http://doi.org/10.1016/j.jnucmat.2007.03.168
R. Novotny, P. Janík, S. Penttilä et al., High Cr ODS steels performance under supercritical water environment. J. Supercrit. Fluids. 81, 147-156 (2013). doi: 10.1016/j.supflu.2013.04.014http://doi.org/10.1016/j.supflu.2013.04.014
K.H. Chang, S.M. Chen, T.K. Yeh et al., Effect of dissolved oxygen content on the oxide structure of Alloy 625 in supercritical water environments at 700°C. Corr. Sci. 81, 21-26 (2014). doi: 10.1016/j.corsci.2013.11.034http://doi.org/10.1016/j.corsci.2013.11.034
Z. Shen, L.F. Zhang, R. Tang et al., SCC susceptibility of type 316Ti stainless steel in supercritical water. J. Nucl. Mater. 458, 206-215 (2015). doi: 10.1016/j.jnucmat.2014.12.014http://doi.org/10.1016/j.jnucmat.2014.12.014
A. Zeman, R. Novotny, O. Uca et al., Behavior of cold-worked AISI-304 steel in stress-corrosion cracking process: Microstructural aspects. Applied Surface Science. 255(1), 160-163 (2008). doi: 10.1016/j.apsusc.2008.05.301http://doi.org/10.1016/j.apsusc.2008.05.301
J. Li, W. Zheng, S. Penttilä et al., Microstructure stability of candidate stainless steels for Gen-IV SCWR fuel cladding application. J. Nucl. Mater. 454(1), 7-11 (2014). doi: 10.1016/j.jnucmat.2014.06.043http://doi.org/10.1016/j.jnucmat.2014.06.043
P. Wu, J.L. Gou, J.Q. Shan et al., Preliminary safety evaluation for CSR1000 with passive safety system. Ann. Nucl. Energy. 65, 390-401 (2014). doi: 10.1016/j.anucene.2013.11.031http://doi.org/10.1016/j.anucene.2013.11.031
E.A. West, G.S. Was, IGSCC of grain boundary engineered 316L and 690 in supercritical water. J. Nucl. Mater. 392(2), 264-271 (2009). doi: 10.1016/j.jnucmat.2009.03.008http://doi.org/10.1016/j.jnucmat.2009.03.008
D. Gómez-Briceno, F. Blázquez, A. Sáez-Maderuelo, Oxidation of austenitic and ferritic/martensitic alloys in supercritical water. J. Supercrit. Fluids. 78, 103-113 (2013). doi: 10.1016/j.supflu.2013.03.014http://doi.org/10.1016/j.supflu.2013.03.014
Z.L. Zhu, H. Xu, D.F. Jiang et al., The role of dissolved oxygen in supercritical water in the oxidation of ferritic-martensitic steel. J. Supercrit. Fluids. 108, 56-60 (2016). doi: 10.1016/j.supflu.2015.10.017http://doi.org/10.1016/j.supflu.2015.10.017
Z.P. Lu, T. Shoji, H. Xue et al., Synergistic effects of local strain-hardening and dissolved oxygen on stress corrosion cracking of 316NG weld heat-affected zones in simulated BWR environments. J. Nucl. Mater. 423, 28-39 (2012). doi: 10.1016/j.jnucmat.2011.12.030http://doi.org/10.1016/j.jnucmat.2011.12.030
L.T. Zhang, J.Q. Wang, Effect of dissolved oxygen content on stress corrosion cracking of a cold worked 316L stainless steel in simulated pressurized water reactor primary water environment. J. Nucl. Mater. 446, 15-26 (2014). doi: 10.1016/j.jnucmat.2013.11.027http://doi.org/10.1016/j.jnucmat.2013.11.027
Z. Shen, L.F. Zhang, R. Tang et al., The effect of temperature on the SSRT behavior of austenitic stainless steels in SCW. J. Nucl. Mater. 454(1), 274-282 (2014). doi: 10.1016/j.jnucmat.2014.08.006http://doi.org/10.1016/j.jnucmat.2014.08.006
H. Je, A. kimura, Stress corrosion cracking susceptibility of candidate structural materials in supercritical pressurized water. J. Nucl. Mater. 455(1), 507-511 (2014). doi: 10.1016/j.jnucmat.2014.08.016http://doi.org/10.1016/j.jnucmat.2014.08.016
K.I. Choudhry, S. Mahboubi, G.A. Botton et al., Corrosion of engineering materials in a supercritical water cooled reactor: Characterization of oxide scales on Alloy 800H and stainless steel 316. Corr. Sci. 100, 222-230 (2015). doi: 10.1016/j.corsci.2015.07.035http://doi.org/10.1016/j.corsci.2015.07.035
Y. Behnamian, A. Mostafaei, A. Kohandehghan et al., A comparative study on the oxidation of austenitic alloys 304 and 304-oxide dispersion strengthened steel in supercritical water at 650°C. J. Supercrit. Fluids. 119, 245-260 (2017). doi: 10.1016/j.supflu.2016.10.002http://doi.org/10.1016/j.supflu.2016.10.002
M. Sun, X. Wu, Z. Zhang et al., Oxidation of 316 stainless steel in supercritical water. Corr. Sci. 51, 1069-1072 (2009). doi: 10.1016/j.corsci.2009.03.008http://doi.org/10.1016/j.corsci.2009.03.008
Y. Behnamian, A. Mostafaei, A. Kohandehghan et al., Characterization of oxide scales grown on alloy 310S stainless steel after long term exposure to supercritical water at 500°C. Mater Charact. 120, 273-284 (2016). doi: 10.1016/j.matchar.2016.09.013http://doi.org/10.1016/j.matchar.2016.09.013
0
Views
0
Downloads
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution