Jing-Jing Li, Ya-Lan Qian, Jun-Lian Yin, et al. Large eddy simulation of unsteady flow in gas–liquid separator applied in thorium molten salt reactor. [J]. Nuclear Science and Techniques 29(5):62(2018)
DOI:
Jing-Jing Li, Ya-Lan Qian, Jun-Lian Yin, et al. Large eddy simulation of unsteady flow in gas–liquid separator applied in thorium molten salt reactor. [J]. Nuclear Science and Techniques 29(5):62(2018) DOI: 10.1007/s41365-018-0411-3.
Large eddy simulation of unsteady flow in gas–liquid separator applied in thorium molten salt reactor
摘要
Abstract
Axial gas–liquid separators have been adopted in fission gas removal systems for the development of thorium molten salt reactors. In our previous study, we observed an unsteady flow phenomenon in which the flow pattern is directly dependent on the backpressure in a gas–liquid separator; however, the underlying flow mechanism is still unknown. In order to move a step further in clarifying how the flow pattern evolves with a variation in backpressure, a large eddy simulation (LES) was adopted to study the flow field evolution. In the simulation, an artificial boundary was applied at the separator outlet under the assumption that the backpressure increases linearly. The numerical results indicate that the unsteady flow feature is captured by the LES approach, and the flow transition is mainly due to the axial velocity profile redistribution induced by the backpressure variation. With the increase in backpressure, the axial velocity near the downstream orifice transits from negative to positive. This change in the axial velocity sign forces the unstable spiral vortex to become a stable rectilinear vortex.
关键词
Keywords
Swirl flowThorium molten salt reactorComputational fluid dynamicsLarge eddy simulation
references
J. Yin, J. Li, Y. Ma, et al., Study on the Air Core Formation of a Gas-Liquid Separator. J. Fluid. Eng.-T. ASME. 137, 91301 (2015). doi: 10.1115/1.4030198http://doi.org/10.1115/1.4030198
J. Yin, Y. Ma, Y. Qian, et al., Experimental investigation of the bubble separation route for an axial gas-liquid separator for TMSR. Ann. Nucl. Energy. 97, 1-6 (2016). doi: 10.1016/j.anucene.2016.06.018http://doi.org/10.1016/j.anucene.2016.06.018
N. Syred, A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog. Energ. Combust. 32, 93-161 (2006). doi: 10.1016/j.pecs.2005.10.002http://doi.org/10.1016/j.pecs.2005.10.002
D. Durox, J.P. Moeck, J. Bourgouin, et al., Flame dynamics of a variable swirl number system and instability control. Combust. Flame. 160, 1729-1742 (2013). doi: 10.1016/j.combustflame.2013.03.004http://doi.org/10.1016/j.combustflame.2013.03.004
G.I. Pisarev, V. Gjerde, B.V. Balakin, et al., Experimental and computational study of the "end of the vortex" phenomenon in reverse-flow centrifugal separators. AIChE J. 58, 1371-1380 (2012). doi: 10.1002/aic.12695http://doi.org/10.1002/aic.12695
J.L. Yin, L. Jiao, L. Wang, Large eddy simulation of unsteady flow in vortex diode. Nucl. Eng. Des. 240, 970-974 (2010).doi: 10.1016/j.nucengdes.2010.01.010http://doi.org/10.1016/j.nucengdes.2010.01.010
S.I. Shtork, N.F. Vieira, E.C. Fernandes, On the identification of helical instabilities in a reacting swirling flow. Fuel. 87, 2314-2321 (2008). doi: 10.1016/j.fuel.2007.10.016http://doi.org/10.1016/j.fuel.2007.10.016
R. Hreiz, C. Gentric, N. Midoux, et al., Hydrodynamics and velocity measurements in gas-liquid swirling flows in cylindrical cyclones. Chem. Eng. Res. Des. 92, 2231-2246 (2014). doi: 10.1016/j.cherd.2014.02.029http://doi.org/10.1016/j.cherd.2014.02.029
S.V. Alekseenko, P.A. Kuibin, V.L. Okulov, et al., Helical vortices in swirl flow. J. Fluid Mech. 382, 195-243 (1999). doi: 10.1017/S0022112098003772http://doi.org/10.1017/S0022112098003772
S. Ragab, M. Sreedhar, Numerical-simulation of vortices with axial velocity deficits. Phys. Fluids. 7, 549-558 (1995). doi: 10.1063/1.868582http://doi.org/10.1063/1.868582
O. Lucca-Negro, T. O'Doherty, Vortex breakdown: a review. Prog. Energ. Combust. 27, 431-481 (2001). doi: 10.1016/S0360-1285(00)00022-8http://doi.org/10.1016/S0360-1285(00)00022-8
J.L. Yin, J.J. Li, Y.F. Ma, et al., Numerical approach on the performance prediction of a gas-liquid separator for TMSR. J. Nucl. Sci. Technol. 1-8(2015).doi: 10.1080/00223131.2015.1092399http://doi.org/10.1080/00223131.2015.1092399
B.C. Cai, J.J. Wang, L.C. Sun, et al., Experimental study and numerical optimization on a vane-type separator for bubble separation in TMSR. Prog. Nucl. Energ. 74, 1-13 (2014). doi: 10.1016/j.pnucene.2014.02.007http://doi.org/10.1016/j.pnucene.2014.02.007
Y. Xu, X. Song, Z. Sun, et al., Numerical investigation of the effect of the ratio of the vortex-finder diameter to the spigot diameter on the steady state of the air core in a hydrocyclone. Ind. Eng. Chem. Res. 52, 5470-5478 (2013). doi: 10.1021/ie302081vhttp://doi.org/10.1021/ie302081v
M. Narasimha, A.N. Mainza, P.N. Holtham, et al., Air-core modelling for hydrocyclones operating with solids. Int. J. Miner. Process. 102, 19-24 (2012).doi: 10.1016/j.minpro.2011.09.004http://doi.org/10.1016/j.minpro.2011.09.004
R. Hreiz, C. Gentric, N. Midoux, Numerical investigation of swirling flow in cylindrical cyclones. Chem. Eng. Res. Des. 89, 2521-2539 (2011).doi: 10.1016/j.cherd.2011.05.001http://doi.org/10.1016/j.cherd.2011.05.001
R. Hreiz, C. Gentric, N. Midoux, Numerical investigation of swirling flow in cylindrical cyclones. Chem. Eng. Res. Des. 89, 2521-2539 (2011). doi: 10.1016/j.cherd.2011.05.001http://doi.org/10.1016/j.cherd.2011.05.001
M. Germano, U. Piomelli, P. Moin, et al. A dynamic subgrid-scale eddy viscosity model. physics of fluids a-fluid dynamics. 3, 1760-1765 (1991). doi: 10.1063/1.857955http://doi.org/10.1063/1.857955
A. Favrel, A. Mueller, C. Landry, et al., Study of the vortex-induced pressure excitation source in a Francis turbine draft tube by particle image velocimetry. Exp. Fluids. 56, 1-15(2015). doi: 10.1007/s00348-015-2085-5http://doi.org/10.1007/s00348-015-2085-5