Ke Deng, Ling Wang, Zheng-Hai Xia, et al. Tritium concentrations in precipitation in Shanghai. [J]. Nuclear Science and Techniques 29(5):63(2018)
DOI:
Ke Deng, Ling Wang, Zheng-Hai Xia, et al. Tritium concentrations in precipitation in Shanghai. [J]. Nuclear Science and Techniques 29(5):63(2018) DOI: 10.1007/s41365-018-0412-2.
Tritium concentrations in precipitation in Shanghai
摘要
Abstract
Tritium concentrations in precipitation can be used as a criterion to evaluate the tritium baseline of the environment. The tritium concentration in precipitation in Shanghai during 2014–2015 was determined. Values ranged from 0.68 ± 0.04 to 4.11 ± 0.39 Bq/L, and it showed a decreasing trend compared with historical data; however, the values were slightly higher than the natural background tritium level. Additionally, the tritium concentration shows a seasonal variation: it was higher in autumn and winter and lower in summer and spring. A comparison of concentrations in precipitation in Shanghai and around the Qinshan Nuclear Power Plant reveals no correlation, implying that the nuclear power plant operations may not affect the environment of Shanghai. Thus, the raised tritium concentrations in Shanghai might be due to the effects of monsoons, spring leak, raindrop, or other activities that generate tritium there. Those activities may include chemistry research that uses tritium as a tracer.
关键词
Keywords
TritiumPrecipitationSeasonalityOrigin
references
E.L. Fireman, Measurement of the (n, 3H) Cross Section in Nitrogen and Its Relationship to the Tritium Production in the Atmosphere; Phys. Rev. 91: 922-926 (1953). doi: 10.1103/PhysRev.91.922http://doi.org/10.1103/PhysRev.91.922
S. Kaufman, W.F. Libby, The Natural Distribution of Tritium; Phys. Rev. 1954, 93: 1337-1344 (1954). doi: 10.1103/PhysRev.93.1337http://doi.org/10.1103/PhysRev.93.1337
H. Morishima, H. Kawai, T. Koga, et al. The trends of global tritium precipitations. Rad. Res, 26: 283-312 (1985). doi: 10.1269/jrr.26.283http://doi.org/10.1269/jrr.26.283
S. Okada, N. Momoshima, Overview of tritium - characteristics, sources, and problems. Health Phys., 65:595-609 (1993). doi: 10.1097/00004032-199312000-00001http://doi.org/10.1097/00004032-199312000-00001
R.L. Michel, Tritium in the hydrologic cycle. Isotopes in the Water Cycle.53-66 (2005). doi: 10.1007/1-4020-3023-1_5http://doi.org/10.1007/1-4020-3023-1_5
A. Tarancon, H. Bagan, G. Rauret, et al. Comparative study of pre-treatment procedures for H-3 monitoring in water samples from environmental protection programs. Sci. Total Environ., 408: 2233-2238 (2010). doi: 10.1016/j.scitotenv.2010.01.021http://doi.org/10.1016/j.scitotenv.2010.01.021
A.K. Patra, D.P. Nankar, C.P. Joshi, et al. An attempt for modeling the atmospheric transport of 3H around Kakrapar Atomic Power Station. Radiat. Prot. Dosim., 130: 351-357 (2008). doi: 10.1093/rpd/ncn055http://doi.org/10.1093/rpd/ncn055
H. Vonbuttlar, W.F. Libby. Natural distribution of cosmic-ray produced tritium. J. Inorg. Nucl. Chem., 1: 75-91 (1955). doi: 10.1016/0022-1902(55)80070-Xhttp://doi.org/10.1016/0022-1902(55)80070-X
R.M. Brown, W. Grummitt. The determination of tritium in natural waters, Can. J. Chem., 34: 220-226 (1956). doi: 10.1139/v56-033http://doi.org/10.1139/v56-033
I. Jakonic, N. Todorovic, J. Nikolov, et al. Optimization of low-level LS counter Quantulus 1220 for tritium determination in water samples. Radiat. Phys. Chem., 98: 69-76 (2014). doi: 10.1016/j.radphyschem.2014.01.012http://doi.org/10.1016/j.radphyschem.2014.01.012
J. Lu, G.Y. Wu, W. Zhang, et al. The investigation of tritium level in water in Suzhou and Qinshan Nuclear Power Plant. Chinese Journal of Radiological Health, 19, 454-455 (2010). doi: 10.13491/j.cnki.issn.1004-714x.2010.04.001http://doi.org/10.13491/j.cnki.issn.1004-714x.2010.04.001
G.Y. Zhu, W.H. Wang, B.R. Cheng. Investigation of Shanghai environmental tritium concentration in the atmosphere and rain, China Radiation Health, 4: 232-233 (1995). doi: 10.13491/j.cnki.issn.1004-714xhttp://doi.org/10.13491/j.cnki.issn.1004-714x.
G.Y. Zhu, W.H. Wang, B.R. Cheng. Tritium levels in foodstuffs and water and dose assessment to residents in Shanghai region. Chin J Radiol Med Prot, 6: 368-371 (1996).
M. Nils, R. Mustefa, S. Christian, et al. Isotopic and chemical composition of precipitation in Riyadh, Saudi Arabia. Chem. Geol., 413: 5162 (2015). doi: 10.1016/j.chemgeo.2015.08.001http://doi.org/10.1016/j.chemgeo.2015.08.001
H. Kyoochul, Y.Y. Yoon, Y.L. Kil, et al. Seasonal variation in the isotopic contents of precipitation in Korea. J Radioanal Nucl Chem, 296: 389-395 (2013). doi: 10.1007/s10967-012-2077-3http://doi.org/10.1007/s10967-012-2077-3
A. Cauquoin, P. Jean-Baptiste, C. Risi, et al. The global distribution of natural tritium in precipitation simulated with an Atmospheric General Circulation Model and comparison with observations, Earth Planet. Sci. Lett., 427: 160-170 (2015). doi: 10.1016/j.epsl.2015.06.043http://doi.org/10.1016/j.epsl.2015.06.043
Y.H. Zhang, S.J. Ye, J.C. Wu. A modified global model for predicting the tritium distribution in precipitation, 1960-2005. Hydrol. Process., 25: 2379-2392 (2011). doi: 10.1002/hyp.8001http://doi.org/10.1002/hyp.8001
J.K. Chen. On the P Value of testing statistical hypotheses. Value Engineering, 30: 257-258 (2011). doi: 10.3969/j.issn.1006-4311.2011.25.185http://doi.org/10.3969/j.issn.1006-4311.2011.25.185
Y.Z. Zhai, J.S. Wang, H. Guo, et al. Reconstruction and optimization of tritium time series in precipitation of Beijing, China. Radiocarbon, 55, 67-79 (2013). doi: 10.2458/azu_js_rc.v55i1.16043http://doi.org/10.2458/azu_js_rc.v55i1.16043