1.Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
2.Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai 400085, India
Corresponding authors: Amitava Royamitava05roy@yahoo.co.in,
kksingh@barc.gov.in
Scan for full text
Amitava Roy, Mayur Darekar, K.K. Singh, et al. Drop formation at nozzles submerged in quiescent continuous phase: an experimental study with TBP-dodecane and nitric acid system. [J]. Nuclear Science and Techniques 29(6):88(2018)
Amitava Roy, Mayur Darekar, K.K. Singh, et al. Drop formation at nozzles submerged in quiescent continuous phase: an experimental study with TBP-dodecane and nitric acid system. [J]. Nuclear Science and Techniques 29(6):88(2018) DOI: 10.1007/s41365-018-0415-z.
Solvent extraction is an important process in the nuclear fuel cycle. Tributyl phosphate (TBP) diluted with dodecane is commonly used as a solvent for extracting heavy metals from a nitric acid medium. Studies on the hydrodynamics of a single drop, which is the smallest mass transfer entity, are required for better understanding of the complex mass transfer and phase separation phenomena that occur in extraction equipment. In this study, drop formation at nozzles is studied using 30%TBP-dodecane as the dispersed phase and dilute nitric acid as the quiescent continuous phase. Experiments are carried out to determine the drop diameter, jetting velocity, drop detachment height and drop formation time for various dispersed phase velocities, nozzle diameters (1.91 mm, 3.04 mm, and 4.88 mm), and nitric acid concentrations (0.01N, 1N, 3N). Drop formation is captured using high speed imaging, which enables quantification of drop size, onset of jetting, drop detachment height, and drop formation time. Experimental data are used to propose correlations for predicting drop diameter and minimum jetting velocity. The correlations are found to be very accurate with average absolute relative errors of 5.23% and 2.9%, respectively.
Drop diameterDrop detachment heightDrop formation timeJetting velocitySolvent extractionTBP-dodecane
Y. Cui, X.F. Yang, C. Yang et al., Solvent extraction of U(VI) by N,N-dimethyl-N′,N′-dioctylsuccinylamide and N,N-dimethyl-N′,N′-didecylsuccinylamide in cyclohexane. Nucl. Sci. Tech. 27, 59 (2016). doi: 10.1007/s41365-016-0056-zhttp://doi.org/10.1007/s41365-016-0056-z
Z. Dong, W.J. Yuan, C. Liu et al., Th(IV) and U(VI) removal by TODGA in ionic liquids: extraction behavior and mechanism, and radiation effect. Nucl. Sci. Tech. 28, 62 (2017). doi: 10.1007/s41365-017-0214-yhttp://doi.org/10.1007/s41365-017-0214-y
A.P. Paiva, P. Malik, Recent advances on the chemistry of solvent extraction applied to the reprocessing of spent nuclear fuels and radioactive wastes. J. Radioanal. Nucl. Chem. 261, 485-496 (2004). doi: 10.1023/B:JRNC.0000034890.23325.b5http://doi.org/10.1023/B:JRNC.0000034890.23325.b5
M.M. Ali, M.H. Taha, H.M. Killa et al., Synergistic extraction of uranium from acidic sulfate leach liquor using D2EHPA mixed with TOPO. J. Radioanal. Nucl. Chem., 300, 963-967 (2014). doi: 10.1007/s10967-014-3094-1http://doi.org/10.1007/s10967-014-3094-1
B. Mokhtari, K. Pourabdollah, N.J. Dallali, A review of calixarene applications in nuclear industries. J. Radioanal. Nucl. Chem. 287, 921-934 (2011). doi: 10.1007/s10967-010-0881-1http://doi.org/10.1007/s10967-010-0881-1
P. Vishnu Anand, R. Rajeev, P. Velavendan et al., Modeling and simulation of diluent recovery unit in PUREX solvent regeneration system. Prog. Nucl. Ener. Article in Press. (2017). doi: 10.1016/j.pnucene.2017.01.011http://doi.org/10.1016/j.pnucene.2017.01.011
S.R. Reddy, R. Trikha, R. Murali et al., Extraction kinetics of ruthenium in the mixture of tri-n-butyl phosphate and n-dodecane. Prog. Nucl. Ener. 86, 50-62 (2016). doi: 10.1016/j.pnucene.2015.10.003http://doi.org/10.1016/j.pnucene.2015.10.003
M. Wegener, N. Paul, M. Kraume, Fluid dynamics and mass transfer at single droplets in liquid-liquid systems. Int. J. Heat Mass Tran. 71, 475-495 (2014). doi: 10.1016/j.ijheatmasstransfer.2013.12.024http://doi.org/10.1016/j.ijheatmasstransfer.2013.12.024
A.O. de Santana, C.C. Dantas, Scale up of the mixer of a mixer-settler model used in a uranium solvent extraction process. J. Radioanal. Nucl. Chem. 189, 257-269 (1995). doi: 10.1007/BF02042604http://doi.org/10.1007/BF02042604
K.K. Singh, S.M. Mahajani, K.T. Shenoy et al., Representative drop sizes and drop size distributions in A/O dispersions in continuous flow stirred tank. Hydrometallurgy 90, 121-136 (2008). doi: 10.1016/j.hydromet.2007.10.003http://doi.org/10.1016/j.hydromet.2007.10.003
S. Kumar, D. Sivakumar, B. Kumar et al., Development of a miniature Taylor-Couette extractor column for nuclear solvent extraction. J. Radioanal. Nucl. Chem. 292, 1237-1240 (2012). doi: 10.1007/s10967-012-1688-zhttp://doi.org/10.1007/s10967-012-1688-z
M. Zhao, S. Cao, W. Duan, Effects of some parameters on mass-transfer efficiency of a ϕ20 mm annular centrifugal contactor for nuclear solvent extraction processes. Prog. Nucl. Ener. 74, 154-159 (2014). doi: 10.1016/j.pnucene.2014.02.024http://doi.org/10.1016/j.pnucene.2014.02.024
K. Mandal, S. Kumar, V. Vijayakumar et al., Hydrodynamic and mass transfer studies of 125 mm centrifugal extractor with 30% TBP/nitric acid system. Prog. Nucl. Ener. 85, 1-10 (2015).
S.V.N Ayyappa, M. Balamurugan, S. Kumar et al., Mass transfer and hydrodynamic studies in a 50 mm diameter centrifugal extractor. Chem. Eng. Proc. 105, 30-37 (2016). doi: 10.1016/j.pnucene.2015.05.005http://doi.org/10.1016/j.pnucene.2015.05.005
J.Q. Liu, S.W. Li, S. Jing, Axial mixing and mass transfer performance of an annular pulsed disc-and-doughnut column. Solv. Extr. Ion Exch. 33, 592-606 (2015). doi: 10.1080/07366299.2015.1074453http://doi.org/10.1080/07366299.2015.1074453
N. Sen, K.K. Singh, A.W. Patwardhan et al., CFD Simulation of two-phase flow in pulsed sieve plate column - Identification of a suitable drag model to predict dispersed phase holdup. Sep. Sci. Tech. 51, 2790-2803 (2016). doi: 10.1080/01496395.2016.1218895http://doi.org/10.1080/01496395.2016.1218895
S. Sarkar, N. Sen, K.K. Singh et al., Effect of operating and geometric parameters on dispersed phase holdup in pulsed disc and doughnut and pulsed sieve plate columns: A comparative study. Chem. Eng. Proc. 118, 131-142 (2017). doi: 10.1016/j.cep.2017.04.016http://doi.org/10.1016/j.cep.2017.04.016.
P. Amani, J. Safdari, A. Gharib et al., Mass transfer studies in a horizontal pulsed sieve-plate column for uranium extraction by tri-n-octylamine using axial dispersion model. Prog. Nucl. Ener. 98, 71-84 (2017). doi: 10.1016/j.pnucene.2017.02.010http://doi.org/10.1016/j.pnucene.2017.02.010
W.D. Harkins, F.E. Brown, The determination of surface tension (free surface energy) and the weight of falling drops - surface tension of water and benzene by the capillary height method. J. Am. Chem. Soc. 41, 499 (1919). doi: 10.1021/ja01461a003http://doi.org/10.1021/ja01461a003
Y.H. Mori, Harkins - Brown correction factor for drop formation. AIChE J. 36, 1272-1274 (1990). doi: 10.1002/aic.690360819http://doi.org/10.1002/aic.690360819
C.B. Hayworth, R.E. Treybal, Drop formation in two liquid phase systems. Ind. Eng. Chem. 42, 1174-1181 (1950). doi: 10.1021/ie50486a030http://doi.org/10.1021/ie50486a030
H.R. Null, H.F. Johnson, Drop formation in liquid-liquid systems from single nozzles. AIChE J. 4, 273-281 (1958). doi: 10.1002/aic.690040308http://doi.org/10.1002/aic.690040308
G.F. Scheele, B.J. Meister, Drop formation at low velocities in liquid-liquid systems. Part I. Prediction of drop volume. AIChE J. 14, 9-15 (1968). doi: 10.1002/aic.690140105http://doi.org/10.1002/aic.690140105.
G.F. Scheele, B.J. Meister, Drop formation at low velocities in liquid-liquid systems: Part II. Prediction of jetting velocity. AIChE J. 14, 15-19 (1968). doi: 10.1002/aic.690140106http://doi.org/10.1002/aic.690140106
B.J. Meister, G.F. Scheele, Prediction of jet length in immiscible liquid systems. AIChE J. 15, 689-699 (1969). doi: 10.1002/aic.690150512http://doi.org/10.1002/aic.690150512
B.J. Meister, G.F. Scheele, Drop formation from cylindrical jets in immiscible liquid systems. AIChE J. 15, 700-706 (1969). doi: 10.1002/aic.690150513http://doi.org/10.1002/aic.690150513
F.A. Hamad, M.K. Khan et al., Comparison of experimental results and numerical predictions of drop diameter from a single submerged nozzle in a liquid-liquid system. Can. J. Chem. Eng. 79, 322-328 (2001). doi: 10.1002/cjce.5450790304http://doi.org/10.1002/cjce.5450790304
A. Soleymani, A. Laari, I. Turunen, Simulation of drop formation in a single hole in solvent extraction using the volume-of-fluid method. Chem. Eng. Res. Des. 86, 731-738 (2008). doi: 10.1016/j.cherd.2008.03.024http://doi.org/10.1016/j.cherd.2008.03.024
E. Bertakis, S. Grob, J. Grande et al., Validated simulation of droplet sedimentation with finite-element and level-set methods. Chem. Eng. Sci. 65, 2037-2051 (2010). doi: 10.1016/j.ces.2009.11.043http://doi.org/10.1016/j.ces.2009.11.043
A. Kumar, S. Hartland, Prediction of drop size produced by a multiorifice distributor. Trans IChemE 60, 35-39 (1982).
S. Homma, J. Koga, S. Matsumoto et al., Breakup mode of an axisymmetric liquid jet injected into another immiscible liquid. Chem. Eng. Sci. 61, 3986-3996 (2006). doi: 10.1016/j.ces.2006.01.029http://doi.org/10.1016/j.ces.2006.01.029
E.V.L.N. Rao, R. Kumar, N.R. Kuloor, Drop formation studies in liquid - liquid systems. Chem. Eng. Sci. 21, 867-880 (1966). doi: 10.1016/0009-2509(66)85081-9http://doi.org/10.1016/0009-2509(66)85081-9
L.E.M. de Chazal, J.T. Ryan, Formation of organic drops in water. AIChE J. 17, 1226-1229 (1971). doi: 10.1002/aic.690170531http://doi.org/10.1002/aic.690170531
N.W. Geary, R.G. Rice, Bubble size prediction for rigid and flexible spargers. AIChE J. 37, 161-168 (1991). doi: 10.1002/aic.690370202http://doi.org/10.1002/aic.690370202
N. Sen, M. Darekar, K.K. Singh et al., Solvent extraction and stripping studies in microchannels with TBP nitric acid system. Sol. Extr. Ion Exch. 32:281-300 (2014). doi: 10.1080/07366299.2013.850290http://doi.org/10.1080/07366299.2013.850290
W.P. Da Silva, C.M.D.P.S. Cavalcanti, C.G.B Silva et al., LAB Fit Curve Fitting: A software in Portuguese for treatment of experimental data. Rev. Bras. Ensino. Fis. 26, 419-427 (2004). doi: 10.1590/S1806-11172004000400018http://doi.org/10.1590/S1806-11172004000400018
J.T. Ryan, PhD Thesis, University of Missouri, (1966)
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution