Hong-Hu Song, Yong-Gang Yuan, Tai-Ping Peng, et al. Optimization study on neutron spectrum unfolding based on the least-squares method. [J]. Nuclear Science and Techniques 29(8):118(2018)
DOI:
Hong-Hu Song, Yong-Gang Yuan, Tai-Ping Peng, et al. Optimization study on neutron spectrum unfolding based on the least-squares method. [J]. Nuclear Science and Techniques 29(8):118(2018) DOI: 10.1007/s41365-018-0454-5.
Optimization study on neutron spectrum unfolding based on the least-squares method
摘要
Abstract
The response functions and pulse height spectrum (PHS) of a 2",,2" BC501A detector were obtained through a general-purpose Monte-Carlo simulation toolkit, Geant4. A relatively simple but effective method was adopted to unfold the PHS. Recommendations regarding the response matrix were proposed to optimize the unfolding results. The results indicate that the accuracy of the unfolding can be greatly improved using many incident neutrons with a wide energy range, a proper energy interval, and an appropriate channel width of the response matrix. The above-mentioned method was verified by unfolding three different types of simulated spectrum, the results of which are in good accord with the simulated distribution.
F.D. Brooks, H. Klein, Neutron spectrometry—historical review and present status. J. Nucl Instrum Meth. 476,1-11 (2002). doi: 10.1016/S0168-9002(01)01378-Xhttp://doi.org/10.1016/S0168-9002(01)01378-X
M.J. Coolbaugh, R.E. Faw, W. Meyer, Fast neutron spectroscopy in aqueous media using an NE-213 proton-recoil neutron spectrometer system. Dept. of Nuclear Engineering (US), COO-2049-7 (1971).
X.F. Xie, X. Yuan, X. Zhang, et al, Calibration and Unfolding of the Pulse Height Spectra of Liquid Scintillator-Based Neutron Detectors Using Photon Sources. J. Plasma Sci Technol. 14,553-557 (2012). doi: 10.1008/1009-0630/14/6/27http://doi.org/10.1008/1009-0630/14/6/27
M. Reginatto, P. Goldhagen, S. Neumann, Spectrum unfolding, sensitivity analysis and propagation of uncertainties with the maximum entropy deconvolution code MAXED. J. Nucl Instrum Meth. 476,242-246 (2002). doi: 10.1016/S0168-9002(01)01439-5http://doi.org/10.1016/S0168-9002(01)01439-5
T. Adye, Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, CERN, Geneva, 17-20 Jan 2011.
Y.H. Chen, X.M. Chen, J.R. Lei, et al, Unfolding the fast neutron spectra of a BC501A liquid scintillation detector using GRAVEL method. J. Sci China-Phys Mech Astron. 57,1885-1890 (2014). doi: 10.1007/s11433-014-5553-7http://doi.org/10.1007/s11433-014-5553-7
A. Hocker, V. Kartvelishvili, SVD approach to data unfolding. J. Nucl.Instrum.Meth.A. 372,469-481 (1996). doi: 10.1016/0168-9002(95)01478-0http://doi.org/10.1016/0168-9002(95)01478-0
X. Wang, H. Zhang, Z. Wu, et al, Development of spectrum unfolding code for multi-sphere neutron spectrometer using genetic algorithms. J. Nucl. Sci. Tech. 25, 36-41 (2014). doi: 10.13538/j.1001-8042/nst.25.S010503http://doi.org/10.13538/j.1001-8042/nst.25.S010503
A.S. Ido, M.R. Bonyadi, G.R. Etaati, et al, Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks. J. Appl Radiat Isotopes. 67,1912-8 (2009). doi: 10.1016/j.apradiso.2009.05.020http://doi.org/10.1016/j.apradiso.2009.05.020
J. Yan, R. Liu, C. Li, et al. Application of artificial neural networks for unfolding neutron spectra by using a scintillation detector. Sci China-Phys Mech Astron, 2011, 54:465-469.doi: 10.1007/s11433-011-4258-4http://doi.org/10.1007/s11433-011-4258-4
Q.J. Zhu, L.C. Tian, X.H. Yang, et al, Advantages of Artificial Neural Network in Neutron Spectra Unfolding. J. Chinese Phys Lett. 31,69-72 (2014). doi: 10.1088/0256-307X/31/7/072901http://doi.org/10.1088/0256-307X/31/7/072901
J. Půlpán, M. Králík, The unfolding of neutron spectra based on the singular value decomposition of the response matrix. J. Nucl Instrum Meth. 325,314-318 (1993). doi: 10.1016/0168-9002(93)91032-Ihttp://doi.org/10.1016/0168-9002(93)91032-I
J. Wang, X.L. Lu, Y. Yan, et al, Study on the unfolding algorithm for D-T neutron energy spectra measurement using recoil proton method. J. Chinese Phys C. (2014). doi: 10.1088/1674-1137/39/7/076201http://doi.org/10.1088/1674-1137/39/7/076201
S.A. Pozzi, E. Padovani, M. Marseguerra, MCNP-PoliMi: a Monte-Carlo code for correlation measurements. J. Nucl Instrum Meth. 513,550-558 (2003). doi: 10.1016/j.nima.2003.06.012http://doi.org/10.1016/j.nima.2003.06.012
R.E. Textor, V.V. Verbinski, R.E. Textor, et al, O5S: A MONTE CARLO CODE FOR CALCULATING PULSE HEIGHT DISTRIBUTIONS DUE TO MONOENERGETIC NEUTRONS INCIDENT ON ORGANIC SCINTILLATORS. (Oak Ridge National Lab,ORNL-4160, 1967)
J.K. Dickens, SCINFUL: A Monte Carlo based computer program to determine a scintillator full energy response to neutron detection for En between 0. 1 and 80 MeV: User's manual and FORTRAN program listing. (Oak Ridge National Lab. ORNL-6463,1988)
G. Dietze, H. Klein, NRESP4 and NEFF4-Monte Carlo codes for the calculation of neutron response functions and detection efficiencies for NE213 scintillation detectors. (PTB-ND-22, Braunschweig, 1982)
G. F. Knoll, Radiation Detection and Measurements, 3rd edn. (Wiley, New York, 1979), pp. 537-573.
F. Gagnon-Moisan, M. Reginatto, A. Zimbal, Results for the response function determination of the Compact Neutron Spectrometer. J. Instrum. 7, 55-61 (2012). doi: 10.1088/1748-0221/7/03/C03023http://doi.org/10.1088/1748-0221/7/03/C03023
R.A. Cecil, B.D. Anderson et al, Improved Predictions of Neutron Detection Efficiency for Hydrocarbon Scintillators from 1 MeV to About 300 MeV. J. Nucl Instrum Meth. 161,439-447 (1979). doi: 10.1016/0029-554X(79)90417-8http://doi.org/10.1016/0029-554X(79)90417-8
N. Patronis, M. Kokkoris, D. Giantsoudi, et al, Aspects of GEANT4 Monte-Carlo calculations of the BC501A neutron detector. J. Nucl Instrum Meth. 578,351-355 (2007). doi: 10.1016/j.nima.2007.05.151http://doi.org/10.1016/j.nima.2007.05.151
G. Jaworski, M. Palacz, J. Nyberg, et al. Monte Carlo simulation of a single detector unit for the neutron detector array NEDA. Nucl. Instrum. Methods, 2012, 673:64-72. doi: 10.1016/j.nima.2012.01.017http://doi.org/10.1016/j.nima.2012.01.017
X.H. Wang, T. He T, H. Guo H et al. Neutron response functions and detection efficiency of a spherical proton recoil proportional counter. Nucl. Sci. Tech. 2010, 21:330-333. doi: 10.13538/j.1001-8042/nst.21.330-333http://doi.org/10.13538/j.1001-8042/nst.21.330-333
S. Schmitt. TUnfold: an algorithm for correcting migration effects in high energy physics. J. J Instrum. 7,T10003 (2012). doi: 10.1088/1748-0221/7/10/T10003http://doi.org/10.1088/1748-0221/7/10/T10003
International Organization for Standardization. Reference neutron radiations-Part I: Characteristics and methods of production. ISO 8529-1, 2000.