1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
Corresponding author. E-mail address: derektsang@sinap.ac.cn
Scan for full text
Yang Zhong, Xiong Yang, Dong Ding, et al. Numerical study of the dynamic characteristics of a single-layer graphite core in a thorium molten salt reactor. [J]. Nuclear Science and Techniques 29(10):141(2018)
Yang Zhong, Xiong Yang, Dong Ding, et al. Numerical study of the dynamic characteristics of a single-layer graphite core in a thorium molten salt reactor. [J]. Nuclear Science and Techniques 29(10):141(2018) DOI: 10.1007/s41365-018-0488-8.
A reactor core in a thorium molten salt reactor uses graphite as a moderator and reflector. The graphite core is a multi-layered arrangement of graphite bricks that are loosely connected to each other using a system of keys and dowels. Consequently, the graphite core is a type of discrete stack structure with highly nonlinear dynamic behavior. Hence, it is important to investigate the dynamic characteristics of the graphite core. In this study, a three-dimensional single-layer graphite core model, which is a part of the thorium molten salt reactor side reflector structure, was analyzed using the explicit method in ABAQUS 2016 to study the core dynamic behavior when subjected to different excitations. The design parameters, such as the diameter of the dowel, the gap between key and keyway and the bypass flow gap between two adjacent bricks, were also considered in this model. To reduce excessive demands on available computational resources considering the effect of molten salt, the spring-dashpot model was applied to model the interaction forces between the molten salt and graphite bricks. Numerical simulation results show that the effect of molten salt is a reduction in the peak maximal principal stress, and a larger gap between two bricks is beneficial to maintain the integrity of the graphite core under earthquake loading. The results obtained by the simulation can be used as a reference for future designs of a molten salt graphite core.
Graphite coreDynamic behaviorABAQUS
J. Serp, M. Allibert, O. Beneš et al., The molten salt reactor (MSR) in generation IV: overview and perspectives. Pro. Nucl. Energ. 77, 308-19 (2014). doi: 10.1016/j.pnucene.2014.02.014http://doi.org/10.1016/j.pnucene.2014.02.014
Z. Dai, Thorium molten salt reactor nuclear energy system (TMSR). Molten Salt Reactors and Thorium Energy. p, 531-40 (2017). doi: 10.1016/b978-0-08-101126-3.00017-8http://doi.org/10.1016/b978-0-08-101126-3.00017-8
L. Sun, L. Shi, H. G. Wan, et al., Seismic study on double-layer model of HTR graphite core structure. At. Energy. Sci. Technol. 46, 839-44 (2012). doi: 10.1115/icone20-power2012-54961http://doi.org/10.1115/icone20-power2012-54961
W. Laframboise, T. Desmond, Nonlinear seismic analysis of a graphite reactor core. Nucl. Eng. Des. 110, 131-46 (1988). doi: 10.1016/0029-5493(88)90013-1http://doi.org/10.1016/0029-5493(88)90013-1
Stations NPG. IEEE Recommended Practice for Seismic Qualification of Class 1E Equipment for Nuclear Power Generating Stations. doi: 10.1109/ieeestd.2005.96099http://doi.org/10.1109/ieeestd.2005.96099
J. Merson, J. Bennett, Computer method for analyzing HTGR core block response to seismic excitation. Los Alamos Scientific Lab., NM (USA), (1976). doi: 10.2172/7334839http://doi.org/10.2172/7334839
T. Ikushima, T. Honma, Simplified Analytical Model for HTGR Core Seismic Response. J. Nucl. Sci. Technol. 16, 605-12 (1979). doi: 10.1080/18811248.1979.9730952http://doi.org/10.1080/18811248.1979.9730952
C. Zeng, H. Wang, A Three-Dimensional Rigid-Body Model for Seismic Analysis of the Pebble-Bed HTR Graphite Core Structure. Publisher (2013). doi: 10.1115/icone21-15896http://doi.org/10.1115/icone21-15896
N. Tsuji, K. Ohashi, Development of seismic analysis model for HTGR core on commercial FEM code. ICONE. (2015). doi: 10.1299/jsmeicone.2015.23._icone23-1_105http://doi.org/10.1299/jsmeicone.2015.23._icone23-1_105
K. Ahmed, J. Parker, D. Proffitt, Seismic response of the advanced gas cooled reactor core. Nucl. Eng. Des. 94, 67-92 (1986). doi: 10.1016/0029-5493(86)90154-8http://doi.org/10.1016/0029-5493(86)90154-8
K. Ahmed, The dynamic response of multi-layers AGR core brick arrays. Nucl. Eng. Des. 104, 1-66 (1987). doi: 10.1016/0029-5493(87)90303-7http://doi.org/10.1016/0029-5493(87)90303-7
K. Ahmed, S. Stojko, The non-linear seismic response of AGR core graphite brick slices correlation of experimental and analytical results. Earthq. Eng. Struc. D. 15, 159-88 (1987). doi: 10.1002/eqe.4290150203http://doi.org/10.1002/eqe.4290150203
W. Rust, Non-linear finite element analysis in structural mechanics: Springer; 2016. doi: 10.1007/978-3-319-13380-5http://doi.org/10.1007/978-3-319-13380-5
Abaqus V. 2016 Documentation. Dassault Systemes Simulia Corporation. 2016. http://abaqus.software.polimi.it/v2016/books/hhp/default.htm?startat=pt02ch02s02.htmlhttp://abaqus.software.polimi.it/v2016/books/hhp/default.htm?startat=pt02ch02s02.html
L. Lu, Y. R. Yang, P. Li, et al., Added mass, added stiffness and added damping coefficients for a parallel plate-type structure. Appl. Mech. Mater. 66-68 (2011). doi: 10.4028/www.scientific.net/AMM.66-68.1738http://doi.org/10.4028/www.scientific.net/AMM.66-68.1738
L. Sargentini, B. Cariteau, M. Angelucci, Experimental and Numerical Analysis for Fluid-Structure Interaction for an Enclosed Hexagonal Assembly. AMSE (2014). doi: 10.1115/pvp2014-28053http://doi.org/10.1115/pvp2014-28053
R. Nightingale, Radiation Effects in Graphite. Nucl. Sci. Eng. 26, 286-7 (1966). doi: 10.2172/4785225http://doi.org/10.2172/4785225
D. Tsang, B. Marsden, J. Vreeling et al., Analyses of a restrained growth graphite irradiation creep experiment. Nucl. Eng. Des. 238, 3026-30 (2008). doi: 10.1016/j.nucengdes.2007.12.017http://doi.org/10.1016/j.nucengdes.2007.12.017
T. Belytschko, Fluid-structure interaction. Comput. Struct. 12, 459-69 (1980). doi: 10.1016/0045-7949(80)90121-2http://doi.org/10.1016/0045-7949(80)90121-2
J. A. Jendrzejczyk, Added mass and damping of a vibrating rod in confined viscous fluids. J. Appl. Mech. 325 (1976). doi: 10.1115/1.3423833http://doi.org/10.1115/1.3423833
W. D. Wilson, Added mass and damping coefficients fora hexagonal cylinder. J. Fluid. Struc. 5, 503-19 (1991). doi: 10.1016/s0889-9746(05)80003-9http://doi.org/10.1016/s0889-9746(05)80003-9
R. Fritz, The effect of liquids on the dynamic motions of immersed solids. J. Eng. Ind. 94, 167-73 (1972). doi: 10.1115/1.3428107http://doi.org/10.1115/1.3428107
Y. Zhong, X. Yang, D. Ding, et al. Dynamic characteristics identification of two graphite bricks in molten salt reactor considering fluid-structure interaction. Nucl. Eng. Des. 335, 409-416(2018). doi: 10.1016/j.nucengdes.2018.06.015http://doi.org/10.1016/j.nucengdes.2018.06.015
0
Views
0
Downloads
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution