1.College of Physics, Jilin University, Changchun 130012, China
Corresponding author, ljb@jlu.edu.cn
Scan for full text
Yu-Min Liu, Jing-Bin Lu, Xiao-Yi Li, et al. A 4H-SiC betavoltaic battery based on a 63Ni source. [J]. Nuclear Science and Techniques 29(11):168(2018)
Yu-Min Liu, Jing-Bin Lu, Xiao-Yi Li, et al. A 4H-SiC betavoltaic battery based on a 63Ni source. [J]. Nuclear Science and Techniques 29(11):168(2018) DOI: 10.1007/s41365-018-0494-x.
A 4H-SiC-,63,Ni p-n-junction-based betavoltaic battery is investigated. The Monte Carlo method is used to simulate the self-absorption effect of the,63,Ni source, the backscattering process, and the transport of beta particles in 4H-SiC material. The main factors that affect the energy conversion efficiencies of the cell are analyzed. Based on the simulation results, it can be calculated that, when the thickness of the ,63,Ni source increases from 2×10,-3, to 10 ,μ,m, the theoretical maximum device conversion efficiency increases from 16.77% to 23.51% and the total conversion efficiency decreases from 16.73% to 1.48%. Furthermore, a feasible design with a maximum output power density of 0.36 ,μ,W/cm,2, and an optimal device conversion efficiency of 23.5% is obtained.
4H-SiC-63Ni betavoltaic batteryp-n junctionEnergy conversion efficiency
M. A. Prelas, C. L. Weaver, M. L. Watermann, et al., A review of nuclear batteries. Pro. Nucl. Energ. 75, 117-148 (2014). doi: 10.1016/j.pnucene.2014.04.007http://doi.org/10.1016/j.pnucene.2014.04.007.
M. Lu, G. G. Zhang, K. Fu, et al., Gallium Nitride Schottky betavoltaic nuclear batteries. Energ. Conv. Manage. 52, 1955-1958 (2011). doi: 10.1016/j.enconman.2010.10.048http://doi.org/10.1016/j.enconman.2010.10.048.
X. Y. Li, Y. Ren, X. J. Chen, et al., 63Ni schottky barrier nuclear battery of 4H-SiC. Radioanal. Nucl. Chem, 287, 173-176 (2011). doi: 10.1007/s10967-010-0746-7http://doi.org/10.1007/s10967-010-0746-7.
X. B. Tang, D. Ding, Y. P. Liu, et al., Optimization design and analysis of Si-63Ni betavoltaic battery. Sci. China. Tech. Sci. 55, 990-996 (2012). doi: 10.1007/s11431-012-4752-6http://doi.org/10.1007/s11431-012-4752-6.
X. B. Tang, Y. P. Liu, D. Ding, et al., Optimization design of GaN betavoltaic microbattery. Sci. China. Tech. Sci. 55, 659-664 (2012). doi: 10.1007/s11431-011-4739-8http://doi.org/10.1007/s11431-011-4739-8.
F. H. Li, G. Xu, Y. L. Yuan, et al., GaN PIN betavoltaic nuclear batteries. Sci. China. Tech. Sci. 57, 25-28 (2014). doi: 10.1007/s11431-013-5422-zhttp://doi.org/10.1007/s11431-013-5422-z.
Y. P. Liu, X. B. Tang, Z. H. Xu, et al., Optimization and temperature effects on sandwich betavoltaic microbattery. Sci. China. Tech. Sci. 57, 14-18 (2014). doi: 10.1007/s11431-013-5413-0http://doi.org/10.1007/s11431-013-5413-0.
V. Bormashov, S. Troschiev, A. Volkov, et al., Development of nuclear microbattery prototype based on Schottky barrier diamond diodes. Phys. Status. Solidi A. 11, 2539-2547 (2015). doi: 10.1002/pssa.201532214http://doi.org/10.1002/pssa.201532214.
Y. P. Liu, X. B. Tang, Z. H. Xu, et al., Influences of planar source thickness on betavoltaics with different semiconductors. Radioanal. Nucl. Chem. 304, 517-525 (2015). doi: 10.1007/s10967-014-3879-2http://doi.org/10.1007/s10967-014-3879-2.
G. Gui, K. Zhang, J. P. Blanchard, et al., Prediction of 4H-SiC betavoltaic microbattery characteristics based on practical Ni-63 sources. Appl. Radiat. Isotopes. 107, 272-277 (2016). doi: 10.1016/j.apradiso.2015.11.001http://doi.org/10.1016/j.apradiso.2015.11.001.
S. Tarelkin, V. Bormashov, E. Korostylev, et al., Comparative study of different metals for Schottky barrier diamond betavoltaic power converter by EBIC technique. Phys. Status. Solidi A. 9, 2492-2497 (2016). doi: 10.1002/pssa.201533060http://doi.org/10.1002/pssa.201533060.
F. Rahmani and H. Khosravinia, Optimization of Silicon parameters as a betavoltaic battery: Comparison of Si p-n and Ni/Si Schottky barrier. Radiat. Phys. Chem. 125, 205-212 (2016). doi: 10.1016/j.radphyschem.2016.04.012http://doi.org/10.1016/j.radphyschem.2016.04.012.
C. Delfaure, M. Pomorski, J. de. Sanoit, et al., Single crystal CVD diamond membranes for betavoltaic cells. Appl. Phys. Lett. 108, 252105:1-4 (2016). doi: 10.1063/1.4954013http://doi.org/10.1063/1.4954013.
K. Zhang, G. Gui, P. Pathak, et al., Quantitative modeling of betavoltaic microbattery performance. Sens. Actuators A. 240, 131-137 (2016). doi: 10.1016/j.sna.2016.01.028http://doi.org/10.1016/j.sna.2016.01.028.
H. Sadeghi, S. M. Mostajabodavati, A. Eshaghi, et al., Design and simulation of a semispherical semiconductor to construct a beta-voltaic battery using c-Si and a-Si: H materials with different doping concentration. J. Comput. Electron. 15, 1577-1592 (2016). doi: 10.1007/s10825-016-0896-0http://doi.org/10.1007/s10825-016-0896-0.
C. Thomas, S. Portnoff and M. G. Spencer. High efficiency 4H-SiC betavoltaic power sources using tritium radioisotopes. Appl. Phys. Lett. 108, 013505:1-4 (2016). doi: 10.1063/1.4939203http://doi.org/10.1063/1.4939203.
S. Butera, G. Lioliou, A. B. Krysa, et al., Temperature dependence of an AlInP 63Ni betavoltaic cell. J. Appl. Phys. 120, 144501:1-5 (2016). doi: 10.1063/1.4964504http://doi.org/10.1063/1.4964504.
A. A. Krasnov, V. V. Starkov, S. A. Legotin, et al., Development of betavoltaic cell technology production based on microchannel silicon and its electrical parameters evaluation. Appl. Radiat. Isotopes. 121, 71-75 (2017). doi: 10.1016/j.apradiso.2016.12.019http://doi.org/10.1016/j.apradiso.2016.12.019.
H. C. Wu, Dissertation. Dalian University of Technology. 2005, pp.20-30.
N. A. Kuruoglu, O. Ozdemir and K. Bozlcurt, Betavoltaic study of a GaN p-i-n structure grown by metal-organic vapour phase epitaxy with a Ni-63 source. Thin Solid Films. 636, 746-750 (2017). doi: 10.1016/j.tsf.2017.07.033http://doi.org/10.1016/j.tsf.2017.07.033
Y. P. Liu, Z. H. Xu, H. Wang, et al., Vacuum degree effects on betavoltaics irradiated by 63Ni with differently apparent activity densities. Sci. China. Tech. Sci. 60, 282-288 (2017). doi: 10.1007/s11431-016-0505-xhttp://doi.org/10.1007/s11431-016-0505-x.
D. A. Neamen, Semiconductor Physics and Devices: Basic Principles, 4th edn. (McGraw-Hill Education and Publishing House of Electronics Industry, xi’an 2017), pp. 248-630.
0
Views
0
Downloads
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution