1.Bülent Ecevit University, Faculty of Arts and Science, Department of Physics, 67100, Zonguldak, Turkey
Corresponding Author. e-mail adress: rbaldik@gmail.com (R. Baldık)
Scan for full text
Rıdvan Baldık, Aykut Yılmaz. A study on the excitation functions of 60,62Ni(α,n), 60,61Ni(α,2n), 58,64Ni(α,p), natNi(α,x) reactions. [J]. Nuclear Science and Techniques 29(11):156(2018)
Rıdvan Baldık, Aykut Yılmaz. A study on the excitation functions of 60,62Ni(α,n), 60,61Ni(α,2n), 58,64Ni(α,p), natNi(α,x) reactions. [J]. Nuclear Science and Techniques 29(11):156(2018) DOI: 10.1007/s41365-018-0500-3.
The prediction of nuclear cross-section data is crucial, especially in the absence of experimental data or in the difficulty of this experimental data. Nickel (Ni) is an important material in fusion and fission reactor technologies, the production of radionuclides in nuclear medicine, and many other fields. In this study, the excitation functions for,60,62,Ni(α,n),60,61,Ni(α,2n),58,64,Ni(α,p), and,nat,Ni(α,x) reactions have been investigated by using pre-equilibrium reaction models. The calculations of the excitation functions for the reactions are used with the geometry dependent hybrid model in ALICE/ASH code and the two-component exciton model in TALYS 1.8 code. The obtained results are compared to each other and the experimental data is taken from the EXFOR database.
Nuclear reaction models and methodsLevel densityAlpha induced reactionsALICE/ASH codeTALYS 1.8 code
E. Yildiz, A. Aydin, Calculation of cross-sections and astrophysical S-factors for 62Ni(α,n) and 62Ni(α,γ) reactions of structural fusion material nickel, J. Fusion Energy. 35 (2016) 605-607. doi: 10.1007/s10894-016-0079-9http://doi.org/10.1007/s10894-016-0079-9.
F. Szelecsényi, Measurement of cross sections of proton induced nuclear reactions on Ti, Ni, Zn, Cd and Au up to 30 MeV and their applications in radioisotope, (2009).
E. Tel, A. Kara, Neutron, proton and alpha emission spectra of nickel isotopes for proton induced reactions, J. Fusion Energy. 31 (2012) 257-261. doi: 10.1007/s10894-011-9470-8http://doi.org/10.1007/s10894-011-9470-8.
E. Tel, Study on some structural fusion materials for (n,p) reactions up to 30 MeV energy, J. Fusion Energy. 29 (2010) 332-336. doi: 10.1007/s10894-010-9285-zhttp://doi.org/10.1007/s10894-010-9285-z.
E. Tel, C. Durgu, N.N. Akti, Ş. Okuducu, Calculations of excitation functions of some structural fusion materials for (n, t) Reactions up to 50 MeV energy, J. Fusion Energy. 29 (2010) 290-294. doi: 10.1007/s10894-010-9277-zhttp://doi.org/10.1007/s10894-010-9277-z.
E. Tel, S. Akca, M. Sahan, et al., The comparison of (n,p), (n,α), (n,2n) and (α,n) reaction cross-sections for 7Li and 9Be target nuclei, J. Fusion Energy. (2016) 1-6. doi:10.1007/s10894-016-0094-xhttp://doi.org/10.1007/s10894-016-0094-x.
B. Demir, H. Sarpün, A. Kaplan, et al., Double differential cross section and stopping power calculations of light charged particle emission for the structural fusion materials 50,52Cr, J. Fusion Energy. 34 (2015) 808-816. doi: 10.1007/s10894-015-9889-4http://doi.org/10.1007/s10894-015-9889-4.
H. Sarpün, A. Aydın, A. Kaplan, et al., Double differential charged particle emission cross sections and stopping power calculations for structural fusion materials 58,60Ni, J. Fusion Energy. 34 (2015) 1306-1313. doi: 10.1007/s10894-015-9961-0http://doi.org/10.1007/s10894-015-9961-0.
A. Aydin, H. Pekdogan, A. Kaplan, et al., Comparison of level density models for the 60,61,62,64Ni(p, n) reactions of structural fusion material nickel from threshold to 30 MeV, J. Fusion Energy. 34 (2015) 1105-1108. doi: 10.1007/s10894-015-9927-2http://doi.org/10.1007/s10894-015-9927-2.
B. Demir, A. Kaplan, V. Çapalı, et al., Neutron production cross-section and Geant4 calculations of the structural fusion material 59Co for (α,xn) and (γ,xn) reactions, J. Fusion Energy. 34 (2015) 636-641. doi: 10.1007/s10894-015-9860-4http://doi.org/10.1007/s10894-015-9860-4.
A. Kaplan, V. ÇapalI, H. Özdoǧan, et al., (3He,xn) reaction cross-section calculations for the structural fusion material 181Ta in the energy range of 14-75 MeV, J. Fusion Energy. 33 (2014) 510-515. doi: 10.1007/s10894-014-9705-6http://doi.org/10.1007/s10894-014-9705-6.
F.A. Uğur, E. Tel, A.A. Gökçe, A study on 19F(n,α) reaction cross section, J. Fusion Energy. 32 (2013) 414-418. doi: 10.1007/s10894-012-9587-4http://doi.org/10.1007/s10894-012-9587-4.
E. Tel, F.A. Ugur, A.A. Gokce, Alpha induced reaction cross section calculations of tantalum nucleus, J. Fusion Energy. 32 (2013) 304-310. doi: 10.1007/s10894-012-9550-4http://doi.org/10.1007/s10894-012-9550-4.
H. Aytekin, O. Artun, R. Baldık, Cross-section calculations of proton induced (p,n) and (p,2n) reactions for production of diagnostic 67Ga, 81Rb, 111In, 123,124I, 123Cs and 123Xe radioisotopes, J. Radioanal. Nucl. Chem. 298 (2013) 95-103. doi: 10.1007/s10967-013-2478-yhttp://doi.org/10.1007/s10967-013-2478-y.
R. Baldık, H. Aytekin, et al, Equilibrium and pre-equilibrium calculations of cross-sections of (p, xn) reactions on 89Y, 90Zr and 94Mo targets used for the production of 89Zr, 90Nb and 94Tc positron-emitting radionuclides, Pramana. 80 (2013) 251-261. doi: 10.1007/s12043-012-0472-5http://doi.org/10.1007/s12043-012-0472-5.
R. Baldık, H. Aytekin, O. Artun, Investigation of excitation functions for (n, 2n) reactions on some samarium, europium and gadolinium isotopes in the mass region 144≤A≤160, Mod. Phys. Lett. A. 29 (2014) 1450074. doi: 10.1142/S0217732314500746http://doi.org/10.1142/S0217732314500746.
H. Aytekin, R. Baldik, Pre-equilibrium and equilibrium calculations of (n, p) reactions on 32S, 64Zn, 67Zn, 89Y, 90Zr and 153Eu targets used for production of 32P, 64Cu, 67Cu, 89Sr, 90Y and 153Sm therapeutic radionuclides, Ann. Nucl. Energy. 53 (2013) 439-446. doi: 10.1016/j.anucene.2012.09.028http://doi.org/10.1016/j.anucene.2012.09.028.
R. Baldik, A. Dombayci, Investigation of the production of 68Ga using pre-equilibrium models, Appl. Radiat. Isot. 113 (2016) 10-17. doi: 10.1016/j.apradiso.2016.04.002http://doi.org/10.1016/j.apradiso.2016.04.002.
O. Artun, H. Aytekin, Calculation of excitation functions of proton, alpha and deuteron induced reactions for production of medical radioisotopes 122-125I, Nucl. Instrum. Meth. B. 345 (2015) 1-8. doi: 10.1016/j.nimb.2014.12.029http://doi.org/10.1016/j.nimb.2014.12.029.
A. Koning, S. Hilaire, S. Goriely, Talys-1.8 A Nuclear Reaction Program, (2015). http://www.talys.eu/fileadmin/talys/user/docs/talys1.8.pdfhttp://www.talys.eu/fileadmin/talys/user/docs/talys1.8.pdf
A.J. Koning, M.C. Duijvestijn, A global pre-equilibrium analysis from 7 to 200 MeV based on the optical model potential, Nucl. Phys. A. 744 (2004) 15-76. doi: 10.1016/j.nuclphysa.2004.08.013http://doi.org/10.1016/j.nuclphysa.2004.08.013.
M. Yiğit, E. Tel, H. Sarpün, Excitation function calculations for α + 93Nb nuclear reactions, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 385 (2016) 59-64. doi: 10.1016/j.nimb.2016.08.019http://doi.org/10.1016/j.nimb.2016.08.019.
A. Kara, T. Korkut, M. Yigit, et al. Modelling study on production cross sections of 111In radioisotopes used in nuclear medicine, 80 (2015) 270-274. doi: 10.3139/124.110527http://doi.org/10.3139/124.110527
M. Eslami, T. Kakavand, M. Mirzaii, Theoretical approach to study the light particles induced production routes of 22Na, Ann. Nucl. Energy. 83 (2015) 14-24. doi: 10.1016/j.anucene.2015.04.004http://doi.org/10.1016/j.anucene.2015.04.004.
I.H. Sarpün, A. Aydin, A. Kaplan, et al., Comparison of fission barrier and level density models for (α,f) reaction of some heavy nuclei, Ann. Nucl. Energy. 70 (2014) 175-179. doi: 10.1016/j.anucene.2014.03.017http://doi.org/10.1016/j.anucene.2014.03.017.
M. Yiğit, A. Kara, Model-based predictions for nuclear excitation functions of neutron-induced reactions on 64,66 -68Zn targets, Nucl. Eng. Technol. 49 (2017) 996-1005. doi: 10.1016/j.net.2017.03.006http://doi.org/10.1016/j.net.2017.03.006.
G. Audi, F.G. Kondev, M. Wang, et al., NUBASE2012 Evaluation of Nuclear Properties, Nucl. Data Sheets. 36 (2012) 1157-1286. doi: 10.1016/j.nds.2014.06.127http://doi.org/10.1016/j.nds.2014.06.127.
S.J. Zinkle, N.M. Ghoniem, Operating temperature windows for fusion reactor structural materials, Fusion Eng. Des. 51-52 (2000) 55-71. doi: 10.1016/S0920-3796(00)00320-3http://doi.org/10.1016/S0920-3796(00)00320-3.
N. Amjed, F. Tarkanyi, A. Hermanne, et al., Activation cross sections of proton induced reactions on natural Ni up to 65MeV., Appl. Radiat. Isot. 92 (2014) 73-84. doi: 10.1016/j.apradiso.2014.06.008http://doi.org/10.1016/j.apradiso.2014.06.008
R. D. Neirinckx, Excitation function for the 60Ni(a,2n)62Zn reaction and production of 62Zn bleomycin, Int. J. Appl. Radiat. Isot. 28 (1977) 808-809. doi: 10.1016/0020-708X(77)90121-1http://doi.org/10.1016/0020-708X(77)90121-1
M. Broeders, C. H. M. Yu Konobeyev, A. Yu Korovin, et al., ALICE/ASH pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions at intermediate energies, (2006) 1-230.
EXFOR, EXFOR/CSISRS (Experimental Nuclear Reaction Data File), EXFOR/CSISRS (Experimental Nucl. React. Data File). (2017).
M. Blann, Hybrid model for pre-equilibrium decay in nuclear reactions, Phys. Rev. Lett. 27 (1971) 337-340.
J.J. Griffin, Statistical model of intermediate structure, Phys. Rev. Lett. 17 (1966) 478. doi: 10.1103/PhysRevLett.17.478http://doi.org/10.1103/PhysRevLett.17.478.
B.J. Harp, G. D. Miller, J. M. Berne, Attainment of statistical equilibrium in excited nuclei. Phys. Rev. 165:1166-1169 (1968). doi: 10.1103/PhysRev.165.1166http://doi.org/10.1103/PhysRev.165.1166
M. Blann, A. Mignerey, Pre-equilibrium decay at moderate excitations and the hybrid model, Nucl. Phys. A. 186 (1972) 245-256. doi: 10.1016/0375-9474(72)90043-7http://doi.org/10.1016/0375-9474(72)90043-7.
M. Blann, Preequilibrium decay, Annu. Rev. Nucl. Sci. 25 (1975) 123-166. doi: 10.1146/annurev.ns.25.120175.001011http://doi.org/10.1146/annurev.ns.25.120175.001011.
M. Blann, H.K. Vonach, Global test of modified precompound decay models, Phys. Rev. C. 28 (1983) 1475-1492. doi: 10.1103/PhysRevC.28.1475http://doi.org/10.1103/PhysRevC.28.1475.
C. Kalbach, Two-component exciton model: Basic formalism away from shell closures, Phys. Rev. C. 33 (1986) 818-833. doi: 10.1103/PhysRevC.33.818http://doi.org/10.1103/PhysRevC.33.818.
H.A. Bethe, An attempt to calculate the number of energy levels of a heavy nucleus, Phys. Rev. 50 (1936) 332-341. doi: 10.1103/PhysRev.50.332http://doi.org/10.1103/PhysRev.50.332.
H.A. Bethe, Nuclear physics B. nuclear dynamics, theoretical, Rev. Mod. Phys. 9 (1937) 69-244. doi: 10.1103/RevModPhys.9.69http://doi.org/10.1103/RevModPhys.9.69.
E. Erba, U. Facchini, E. Saetta Menichella, Statistical emission in nuclear reactions and nuclear level density (*).,Il Nuovo Cimento 22 (1961) 1237-1260. doi: 10.1007/BF02786895http://doi.org/10.1007/BF02786895
T.D. Newton, Shell effects on the spacing of nuclear levels, Can. J. Phys. 34 (1956) 804-829. doi: 10.1139/p56-090http://doi.org/10.1139/p56-090
A. Cameron, Nuclear level spacings, Can. J. Phys. 36 (1958) 1040-1057.doi: 10.1139/p58-112http://doi.org/10.1139/p58-112
M. Guttormsen, M. Hjorth-Jensen, E. Melby, et al., Energy shifted level densities in rare earth region, Phys. Rev. C. 61 (2000) 067302. doi: 10.1103/PhysRevC.61.067302http://doi.org/10.1103/PhysRevC.61.067302
A. Gilbert, A.G.W. Cameron, With Shell Corrections, 43 (1965).
W. Dilg, W. Schantl, H. Vonach, M. Uhl, Level density parameters for the back-shifted fermi gas model in the mass range 40 < A < 250, Nucl. Physics A. 217 (1973) 269-298. doi: 10.1016/0375-9474(73)90196-6http://doi.org/10.1016/0375-9474(73)90196-6.
A. V Ignatyuk, K.K. Istekov, G.N. Smirenkin, The role of collective effects for nuclear level density systematics, Yad. Fiz. 29 (1979) 875.
A. V Ignatyuk, J.L. Weil, S. Raman, et al., Density of discrete levels in 116Sn, Phys. Rev. C. 47 (1993) 1504-1513. doi: 10.1103/PhysRevC.47.1504http://doi.org/10.1103/PhysRevC.47.1504
A. Yadav, P.P. Singh, M.K. Sharma, et al., Large pre-equilibrium contribution in α+natNi interactions at ~8-40 MeV, Phys. Rev. C, 78 (2008) 044606. doi: 10.1103/PhysRevC.78.044606http://doi.org/10.1103/PhysRevC.78.044606.
V.N. Levkovski, Cross sections of medium mass nuclide activation (A=40-100) by medium energy protons and alpha-particles (E=10-50 MeV), Act.Cs.By Protons and Alphas, Moscow, 1991.
S. Tanaka, Reactions of nickel with alpha-particles, J. Phys. Soc. Japan. 15 (1960) 2159-2167. doi: 10.1143/JPSJ.15.2159http://doi.org/10.1143/JPSJ.15.2159
P.H. Stelson and F.K. McGowan, Cross sections for (alpha,n) reactions for medium- weight nuclei, Phys. Rev. 133 (1964) B911-B919. doi: 10.1103/PhysRev.133.B911http://doi.org/10.1103/PhysRev.133.B911
W. Hille, M. Hille, P. Uhl, et al., Excitation functions of (p,n) and (a,n) reactions on Ni, Cu and Zn, Nucl. Phys. A. 198 (1972) 625-640. doi: 10.1016/0375-9474(72)90713-0http://doi.org/10.1016/0375-9474(72)90713-0
S.N. Ghoshal, An experimental verification of the theory of compound nucleus, Phys. Rev. 80 (1950) 939-942. doi: 10.1103/PhysRev.80.939http://doi.org/10.1103/PhysRev.80.939
J.L. Zyskind, J.M. Davidson, M.T. Esat, et al., Competition cusps in (alpha,gamma) reactions, Nucl. Phys. A. 331 (1979) 180-192. doi: 10.1016/0375-9474(79)90308-7http://doi.org/10.1016/0375-9474(79)90308-7
A.E. Vlieks, J.F. Morgan, S.L. Blatt, Total cross sections for some (α,n) and (α,p) reactions in medium-weight nuclei, Nucl. Phys. A. 224 (1974) 492-502. doi: 10.1016/0375-9474(74)90551-Xhttp://doi.org/10.1016/0375-9474(74)90551-X
G.I.Y. Antropov A.E., Zarubın P.P., Aleksandrov YU. A., Cross sections measurements of (p,n),(a,pn),(a,xn) reactions on nuclei Middle Atomic Weight, in: 35.Conf.Nucl.Spectr.and Nucl.Struct.,Leningr., 1985: p. 369.
M.N. Aslam, S.M. Qaim, Nuclear model analysis of excitation functions of proton, deuteron and α-particle induced reactions on nickel isotopes for production of the medically interesting copper-61, Appl. Radiat. Isot. 89 (2014) 65-73. doi: 10.1016/j.apradiso.2014.02.007http://doi.org/10.1016/j.apradiso.2014.02.007.
Y. Skakun, S.M. Qaim, Excitation function of the 64Ni(α,p)67Cu reaction for production of 67Cu, Appl. Radiat. Isot. 60 (2004) 33-39. doi: 10.1016/j.apradiso.2003.09.003http://doi.org/10.1016/j.apradiso.2003.09.003.
R.L. Paul, L.J. Harris, P.A.J. Englert, et al., Production of cosmogenic nuclides in thick targets by alpha bombardment. Part I - short-lived radioisotopes, Nucl. Inst. Methods Phys. Res. B. 100 (1995) 464-470. doi: 10.1016/0168-583X(95)00355-Xhttp://doi.org/10.1016/0168-583X(95)00355-X.
R. Michel, G. Brinkmann, R. Stock, Integral excitation functions of alpha-induced reactıons on titanium,iron and nickel, Radiochim. Acta. 32 (1983) 173-189. doi: 10.1524/ract.1983.32.4.173http://doi.org/10.1524/ract.1983.32.4.173
N.L. Singh, S. Mukherjee, M.S. Gadkari, Excitation functions of alpha induced reactions on natural nickel up to 50 MeV, Int. J. Mod. Phys. E. 14 (2005) 611-629. doi: 10.1142/S021830130500348Xhttp://doi.org/10.1142/S021830130500348X
H. Muramatsu, E. Shirai, H. Nakahara, et al., Alpha particle bombardments of natural nickel target for the production of 61Cu, Appl. Radiat. Isot. 29 (1978) 611-614. doi: 10.1016/0020-708X(78)90094-7http://doi.org/10.1016/0020-708X(78)90094-7
S. Takacs, F. Tarkanyi, Z. Kovacs, Excitation function of alpha-particle induced nuclear reactions on natural nickel, Nucl. Instrum. Meth. B. 113 (1996) 424-428. doi: 10.1016/0168-583X(95)01349-0http://doi.org/10.1016/0168-583X(95)01349-0
H. Gruppelaar, P. Nagel, P.E. Hodgson, Pre-equilibrium processes in nuclear reaction theory: the state of the art and beyond, La Riv. Del Nuovo Cim. Ser. 3. 9 (1986) 1-46. doi: 10.1007/BF02725961http://doi.org/10.1007/BF02725961.
J. Bisplinghoff, Configuration mixing in preequilibrium reactions: A new look at the hybrid-exciton controversy, Phys. Rev. C. 33 (1986) 1569-1580. doi: 10.1103/PhysRevC.33.1569http://doi.org/10.1103/PhysRevC.33.1569
J. Ernst, J.R. Rao, A Unified Model of Preequilibrium Decay, Zeitschrift für Physik A Hadrons and Nuclei 281 (1977) 129-135. doi: 10.1007/BF01408624http://doi.org/10.1007/BF01408624
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution