1.GANIL, CEA/DRF-CNRS/IN2P3, Caen, France
2.Normandie Université, Unicaen, Caen, France
3.Irfu-CEA, Université Paris-Saclay, Gif-sur-Yvette, France
4.RCNP, Osaka University, Ibaraki-shi, Japan
5.School of Science, Huzhou University, Huzhou 313000, China
Corresponding author, boilley@ganil.fr
Scan for full text
David Boilley, Bartholomé Cauchois, Hongliang Lü, et al. How accurately can we predict synthesis cross-sections of superheavy elements?. [J]. Nuclear Science and Techniques 29(12):172(2018)
David Boilley, Bartholomé Cauchois, Hongliang Lü, et al. How accurately can we predict synthesis cross-sections of superheavy elements?. [J]. Nuclear Science and Techniques 29(12):172(2018) DOI: 10.1007/s41365-018-0509-7.
Synthesis of superheavy elements beyond oganesson is facing new challenges as new target-projectile combinations are necessary. Guidance from models is thus expected for future experiments. However, hindered fusion models are not well established and predictions in the fission barriers span few MeVs. Consequently, predictions are not reliable. Strategies to constrain both fusion hindrance and fission barriers are necessary to improve the predictive power of the models. But, there is no hope to get an accuracy better than one order of magnitude in fusion-evaporation reactions leading to superheavy elements synthesis.
Superheavy elementsNuclear reactionsNncertainty analysis
L. Öhrström, J. Reedijk, Names and symbols of the elements with atomic numbers 113, 115, 117 and 118 (IUPAC Recommendations 2016). Pure Appl. Chem. 88, 1225 (2016). doi: 10.1515/pac-2016-0501http://doi.org/10.1515/pac-2016-0501.
P. Armbruster, G. Müzenberg, An experimental paradigm opening the world of superheavy elements. Eur. Phys. J. H 37, 237 (2012). doi: 10.1140/epjh/e2012-20046-7http://doi.org/10.1140/epjh/e2012-20046-7
R. S. Naik, W. Loveland, P. H. Sprunger, et al., Measurement of the fusion probability PCN for the reaction of 50Ti with 208Pb. Phys. Rev. C 76, 054604 (2007). doi: 10.1103/PhysRevC.76.054604http://doi.org/10.1103/PhysRevC.76.054604.
W. Loveland, An experimentalist’s view of the uncertainties in understanding heavy element synthesis. Eur. Phys. J. A 51, 120 (2015). doi: 10.1140/epja/i2015-15120-2http://doi.org/10.1140/epja/i2015-15120-2.
H. Lü, Synthesis of Super-Heavy Elements: Role of Uncertainty Analysis in Theoretical Modeling. Ph.D. Thesis, Normandie Université, Caen, France (2015) http://hal.in2p3.fr/tel-01235448hal:tel-01235448http://hal.in2p3.fr/tel-01235448hal:tel-01235448.
H. Lü, D. Boilley, Y. Abe, et al., Synthesis of superheavy elements: Uncertainty analysis to improve the predictive power of reaction models. Phys. Rev. C 94, 034616 (2016). doi: 10.1103/PhysRevC.94.034616http://doi.org/10.1103/PhysRevC.94.034616.
A. Baran, M. Kował, P.-G. Reinhard, et al., Fission barriers and probabilities of spontaneous fission for elements with Z ≥ 100. Nucl. Phys. A 944, 442 (2015). doi: 10.1016/j.nuclphysa.2015.06.002http://doi.org/10.1016/j.nuclphysa.2015.06.002.
F.P. Heß berger, Spontaneous fission properties of superheavy elements. Eur. Phys. J. A 53, 75 (2017). doi: 10.1140/epja/i2017-12260-3http://doi.org/10.1140/epja/i2017-12260-3
H. Lü, A. Marchix, Y. Abe, et al., KEWPIE2: A cascade code for the study of dynamical decay of excited nuclei. Comp. Phys. Comm. 200, 381 (2016). doi: 10.1016/j.cpc.2015.12.003http://doi.org/10.1016/j.cpc.2015.12.003.
B. Cauchois, Uncertainty analysis: Towards more accurate predictions for the synthesis of superheavy nuclei. Ph.D. Thesis, Normandie Université, Caen, France (2018)
J. D. McDonnell, N. Schunck, D. Higdon, et al., Uncertainty quantification for nuclear density functional theory and information content of new measurements. Phys. Rev. Lett. 114, 122501 (2015). doi: 10.1103/PhysRevLett.114.122501http://doi.org/10.1103/PhysRevLett.114.122501
B. Cauchois, H. Lü, D. Boilley, G. Royer, Uncertainty analysis of the nuclear Liquid Drop Model. Phys. Rev. C 98, 024305 (2018). doi: 10.1103/PhysRevC.98.024305http://doi.org/10.1103/PhysRevC.98.024305
G. Henning, A. Lopez-Martens, T.L. Khoo, et al., Exploring the stability of super heavy elements: First Measurement of the Fission Barrier of 254No. EPJ Web of Conf. 66, 02046 (2014). doi: 10.1051/epjconf/20146602046http://doi.org/10.1051/epjconf/20146602046
G. Henning, T. L. Khoo, A. Lopez-Martens, et al., Fission barrier of superheavy nuclei and persistence of shell effects at high spin: Cases of 254No and 220Th. Phys. Rev. Lett. 113, 262505 (2014). doi: 10.1103/PhysRevLett.113.262505http://doi.org/10.1103/PhysRevLett.113.262505
A. Lopez-Martens, G. Henning, T.L. Khoo, et al., Stability and synthesis of superheavy elements: Fighting the battle against fission - example of 254No. EPJ Web of Conf. 131, 03001 (2016). doi: 10.1051/epjconf/201613103001http://doi.org/10.1051/epjconf/201613103001
H. Lü, D. Boilley, Modelling with uncertainties: The role of the fission barrier. EPJ Web of Conferences 62, 03002 (2013). doi: 10.1051/epjconf/20136203002http://doi.org/10.1051/epjconf/20136203002
A.V. Ignatyuk, G. Smirenkin, A. Tishin, Phenomenological description of energy dependence of the level density parameter. Yad. Fiz. 21, 485 (1975)
T. Sikkeland, Synthesis of nuclei in the region of Z=126 and N=184. Arkiv för Fysik 36, 539 (1967).
J.R. Nix, A.J. Sierk, Calculation of compound-nucleus cross sections for symmetric very-heavy-ion reactions. Phys. Rev. C 15, 2072 (1977). doi: 10.1103/PhysRevC.15.2072http://doi.org/10.1103/PhysRevC.15.2072
W.J. Świątecki, The dynamics of nuclear coalescence or reseparation. Physica Scripta 24, 113 (1981). doi: 10.1088/0031-8949/24/1B/007http://doi.org/10.1088/0031-8949/24/1B/007
W.J. Świątecki, The dynamics of the fusion of two nuclei. Nucl. Phys. A 376, 275 (1982). doi: 10.1016/0375-9474(82)90065-3http://doi.org/10.1016/0375-9474(82)90065-3
K.-H. Schmidt, W. Morawek, The conditions for the synthesis of heavy nuclei. Rep. Prog. Phys. 54, 949 (1991). doi: 10.1088/0034-4885/54/7/002http://doi.org/10.1088/0034-4885/54/7/002
J.P. Błocki, H. Feldmeier, W.J. Świątecki, Dynamical hindrance to compound-nucleus formation in heavy-ion reactions. Nucl. Phys. A 459, 145 (1986). doi: 10.1016/0375-9474(86)90061-8http://doi.org/10.1016/0375-9474(86)90061-8
Y. Abe, S. Ayik, P.-G. Reinhard, et al., On the stochastic approaches of nuclear dynamics. Phys. Rep. 275, 49 (1996). doi: 10.1016/0370-1573(96)00003-8http://doi.org/10.1016/0370-1573(96)00003-8
Y. Abe, D. Boilley, B. G. Giraud, et al., Diffusion over a saddle with a Langevin equation. Phys. Rev. E 61, 1125 (2000). doi: 10.1103/PhysRevE.61.1125http://doi.org/10.1103/PhysRevE.61.1125
C. Shen, G. Kosenko, Y. Abe, Two-step model of fusion for the synthesis of superheavy elements. Phys. Rev. C 66, 061602(R) (2002). doi: 10.1103/PhysRevC.66.061602http://doi.org/10.1103/PhysRevC.66.061602
D. Boilley, Y. Abe, J.-D. Bao, Inverse Kramers formula and fusion dynamics of heavy ions. Eur. Phys. J. A 18 627 (2003). doi: 10.1140/epja/i2003-10088-0http://doi.org/10.1140/epja/i2003-10088-0
W.J. Świątecki, K. Siwek-Wilczyńska, J. Wilczyński, Fusion by diffusion. Acta Phys. Pol. B 34, 2049 (2003). http://www.actaphys.uj.edu.pl/fulltext?series=Reg vol=34 page=2049actaphys.uj.edu.pl/http://www.actaphys.uj.edu.pl/fulltext?series=Reg vol=34 page=2049actaphys.uj.edu.pl/
W.J. Świątecki, K. Siwek-Wilczyńska, J. Wilczyński, Fusion by diffusion. II. Synthesis of transfermium elements in cold fusion reactions. Phys. Rev. C 71, 014602 (2005). doi: 10.1103/PhysRevC.71.014602http://doi.org/10.1103/PhysRevC.71.014602
D. Boilley, Y. Abe, B. Cauchois, et al., Elimination of fast variables and initial slip: a new mechanism to the fusion hindrance in heavy ions collisions. Submitted.
N.V. Antonenko, E.A. Cherepanov, A.K. Nasirov, et al., Competition between complete fusion and quasi-fission in reactions between massive nuclei. The fusion barrier. Phys. Lett. B 319, 425 (1993). doi: 10.1016/0370-2693(93)91746-Ahttp://doi.org/10.1016/0370-2693(93)91746-A
G.G. Adamian, N.V. Antonenko, W. Scheid, et al., Treatment of competition between complete fusion and quasifission in collisions of heavy nuclei. Nucl. Phys. A 627, 361 (1997). doi: 10.1016/S0375-9474(97)00605-2http://doi.org/10.1016/S0375-9474(97)00605-2
G.G. Adamian, N.V. Antonenko, W. Scheid, et al., Fusion cross sections for superheavy nuclei in the dinuclear system concept. Nucl. Phys. A 633, 409 (1998). doi: 10.1016/S0375-9474(98)00124-9http://doi.org/10.1016/S0375-9474(98)00124-9
D. Hinde, Fusion and Quasifission in Superheavy Element Synthesis. Nucl. Phys. News 28, 13 (2018), https://www.nupecc.org/npn/npn281.pdfNUPECC.https://www.nupecc.org/npn/npn281.pdfNUPECC.
Editors, Editorial: Uncertainty Estimates. Phys. Rev. A 83, 040001 (2011). doi: 10.1103/PhysRevA.83.040001http://doi.org/10.1103/PhysRevA.83.040001.
0
Views
0
Downloads
6
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution