1.Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan, Thu Duc, HCMC, Vietnam
2.Institute of Fundamental and Applied Sciences, Duy Tan University, 3 Quang Trung, Da Nang, Vietnam
Corresponding author, tranhoainam4@dtu.edu.vn
Scan for full text
Quang Binh Do, Hoai-Nam Tran, Quang Huy Ngo, et al. Determination of fuel burnup distribution of a research reactor based on measurements at subcritical conditions. [J]. Nuclear Science and Techniques 29(12):174(2018)
Quang Binh Do, Hoai-Nam Tran, Quang Huy Ngo, et al. Determination of fuel burnup distribution of a research reactor based on measurements at subcritical conditions. [J]. Nuclear Science and Techniques 29(12):174(2018) DOI: 10.1007/s41365-018-0511-0.
This paper presents the determination of the fuel burnup distribution of the Dalat nuclear research reactor (DNRR) using a method of measurements at subcritical conditions. The method is based on the assumption of linear dependence of the reactivity on the burnup of fuel bundles and the measurements at subcritical conditions. The measurements were conducted for seven selected fuel bundles in two different measuring sequences. The measured burnup values have also been compared with the calculations for verifying the method and the measurement procedure. The results obtained with the three detectors have a good agreement with each other with a discrepancy less than 1.0%. The errors of the measured burnup values are within 6%. Comparison between the calculated and measured burnup values shows that the discrepancy of the C/E ratio is within 9% compared to unity. The results indicate that the method of measurements at subcritical conditions could be well applied to determine the relative burnup distribution of the DNRR.
Burnup distributionSubcritical measurementResearch reactorDNRR
IAEA, Determination of research reactor fuel burnup, Tech. rep., IAEA-TECDOC-633, Vienna. 1992.
J.S. Kim, S.H. Han, M.Y. Suh, et al., Burnup measurement of irradiated uranium dioxide fuel by chemical methods. J. Korean Nucl. Soc. 21 (4), 277-286 (1989).
A.B. Ginting, P.H. Liem, Absolute burnup measurement of LEU silicide fuel plate irradiated in the RSG GAS multipurpose reactor by destructive radiochemical technique. Ann. Nucl. Energy, 85, 613-620 (2015). doi: 10.1016/j.anucene.2015.06.016http://doi.org/10.1016/j.anucene.2015.06.016
P.H. Liem, S. Amini, A.G. Hutagaol, et al., Nondestructive burnup verification by gamma-ray spectroscopy of LEU silicide fuel plates irradiated in the RSG GAS multipurpose reactor. Ann. Nucl. Energy, 56, 57-65 (2013;). doi: 10.1016/j.anucene.2013.01.013http://doi.org/10.1016/j.anucene.2013.01.013
S.A. Ansari, M. Asif, T. Rashid, et al., Burnup studies of spent fuels of varying types and enrichment. Ann. Nucl. Energy, 34 (8), 641-651 (34). doi: 10.1016/j.anucene.2007.02.010http://doi.org/10.1016/j.anucene.2007.02.010
I. Matsson, B. Grapengiessew, Developments in gamma scanning of irradiated nuclear fuel. Appl. Radiat. Isotopes, 48 (10-12), 1289-1298 (1997). doi: 10.1016/S0969-8043(97)00121-8http://doi.org/10.1016/S0969-8043(97)00121-8
S. Caruso, M. Murphy, F. Jatuff, et al., Validation of 134Cs, 137Cs and 154Eu single ratios as burnup monitors for ultra-high burnup UO2 fuel. Ann. Nucl. Energy, 34 (1-2), 28-35 (2007). doi: 10.1016/j.anucene.2006.11.009http://doi.org/10.1016/j.anucene.2006.11.009
M.V. Mora, A.G. Padilla, J.L.C. Palomino, et al., Nondestructive burnup measurements by gamma-ray spectroscopy on spent fuel elements of the RP-10 research reactor. Prog. Nucl. Energy, 53 (4), 344-353 (2011). doi: 10.1016/j.pnucene.2011.01.003http://doi.org/10.1016/j.pnucene.2011.01.003
L.A.A. Terremoto, C.A. Zeituni, J.A. Perrotta, et al., Gamma-ray spectroscopy on irradiated MTR fuel elements. Nucl. Instrum. Meth. A. 450 (2-3):495-514 (2000). doi: 10.1016/S0168-9002(00)00250-3http://doi.org/10.1016/S0168-9002(00)00250-3
M. Iqbal, T. Mehmood, S.K. Ayazuddin, et al., A comparative study to investigate burnup in research reactor fuel using two independent experimental methods. Ann. Nucl. Energy, 28 (17), 1733-1744 (2001). doi: 10.1016/S0306-4549(01)00013-5http://doi.org/10.1016/S0306-4549(01)00013-5
D.Q. Binh, N.Q. Huy, N.P. Lan, et al., A method for determining the fuel burn-up distribution of nuclear research reactors by measurements at subcritical states. Ann. Nucl. Energy, 24 (15), 1233-1240 (1997). doi: 10.1016/S0306-4549(96)00108-9http://doi.org/10.1016/S0306-4549(96)00108-9
S. Pinem, P.H. Liem, T.M. Sembiring, et al., Fuel element burnup measurements for the equilibrium LEU silicide RSG GAS (MPR-30) core under a new fuel management strategy. Ann. Nucl. Energy, 98, 211-217 (2016). doi: 10.1016/j.anucene.2016.08.010http://doi.org/10.1016/j.anucene.2016.08.010
G.R. Keepin, Physics of nuclear kinetics, (Addison-Wesley, New York, 1965).
SAR Report. Safety analysis report for the Dalat nuclear research reactor. Vietnam: Nuclear Research Institute, Vietnam Atomic Energy Commission; 2009.
N.D. Nguyen, B.V. Luong, V.V. Le, et al., Results of operation and utilization of the Dalat nuclear research reactor. Nucl. Sci. Technol. 4 (1), 1-9 (2014).
AEA Technology, WIMSD - a neutronics code for standard lattice physics analysis. ANSWERS Software Service; 1997.
T.B. Fowler, D.R. Vondy, F.B. Kemshell, Nuclear reactor core analysis code: CITATION. ORNL-TM-2496, RSICC; 1971.
G. Phan, H.N. Tran, K.C. Nguyen, et al., Comparative analysis of the dalat nuclear research reactor with HEU fuel using SRAC and MCNP5. Sci. Technol. Nucl. Inst. 2017; Article ID 2615409. doi: 10.1155/2017/2615409http://doi.org/10.1155/2017/2615409
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution