1.National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
Corresponding author: qming@nju.edu.cn
Scan for full text
Rui Zhang, De-Wen Cao, Chang-Wei Loh, et al. Using monochromatic light to measure attenuation length of liquid scintillator solvent LAB. [J]. Nuclear Science and Techniques 30(2):30(2019)
Rui Zhang, De-Wen Cao, Chang-Wei Loh, et al. Using monochromatic light to measure attenuation length of liquid scintillator solvent LAB. [J]. Nuclear Science and Techniques 30(2):30(2019) DOI: 10.1007/s41365-019-0542-1.
Linear alkylbenzene (LAB) will be used as solvent for the liquid scintillator in the central detector of Jiangmen Underground Neutrino Observatory (JUNO). The sheer size of the detector imposes significant challenges and the necessity to further improve the optical transparency of high-quality LAB. In order to study high optical transparencies, we continuously improve our measurement setup and use monochromatic light to measure the attenuation lengths of LAB samples. Moreover, the effects of organic impurities on LAB samples are studied to understand their interaction mechanisms and further improve the optical transparency of LAB.
Neutrino detectorLinear alkylbenzeneLight absorption
F. An, G. An, Q. An et al., Neutrino physics with JUNO. J. Phys. G 43, 030401 (2016). doi: 10.1088/0954-3899/43/3/030401http://doi.org/10.1088/0954-3899/43/3/030401
L. Zhan, Y.F. Wang, J. Cao et al., Determination of the neutrino mass hierarchy at an intermediate baseline. Phys. Rev. D 78, 111103(R) (2008). doi: 10.1103/PhysRevD.78.111103http://doi.org/10.1103/PhysRevD.78.111103
L. Zhan, Y.F. Wang, J. Cao et al., Experimental requirements to determine the neutrino mass hierarchy using reactor neutrinos. Phys. Rev. D 79, 073007 (2009). doi: 10.1103/PhysRevD.79.073007http://doi.org/10.1103/PhysRevD.79.073007
Y.F. Li, J. Cao, Y.F. Wang et al., Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos. Phys. Rev. D 88, 013008 (2013). doi: 10.1103/PhysRevD.88.013008http://doi.org/10.1103/PhysRevD.88.013008
F.P. An, A.B. Balantekin, H.R. Band et al., Spectral measurement of electron antineutrino oscillation amplitude and frequency at Daya bay. Phys. Rev. Lett. 112, 061801 (2014). doi: 10.1103/PhysRevLett.112.061801http://doi.org/10.1103/PhysRevLett.112.061801
F.P. An, A.B. Balantekin, H.R. Band et al., Search for a light sterile neutrino at Daya bay. Phys. Rev. Lett. 113, 141802 (2014).doi: 10.1103/PhysRevLett.113.141802http://doi.org/10.1103/PhysRevLett.113.141802
F.P. An, A.B. Balantekin, H.R. Band et al., New measurement of antineutrino oscillation with the full detector configuration at Daya bay. Phys. Rev. Lett. 115, 111802 (2015). doi: 10.1103/PhysRevLett.115.111802http://doi.org/10.1103/PhysRevLett.115.111802
F.P. An, A.B. Balantekin, H.R. Band et al., Measurement of the reactor antineutrino flux and spectrum at Daya bay. Phys. Rev. Lett. 116, 061801 (2016). doi: 10.1103/PhysRevLett.116.061801http://doi.org/10.1103/PhysRevLett.116.061801.
M.A. Schumaker, SNO+ collaboration, supernova detection with SNO+. Nucl. Phys. B 547, 229-232 (2012). doi: 10.1016/j.nuclphysbps.2012.09.184http://doi.org/10.1016/j.nuclphysbps.2012.09.184
J.K. Ahn, S. Chebotaryov, J.H. Choi et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108, 191802 (2012). doi: 10.1103/PhysRevLett.108.191802http://doi.org/10.1103/PhysRevLett.108.191802
Y. Abe, C. Aberle, J.C. dos Anjos et al., Reactor electron antineutrino disappearance in the double CHOOZ experiment, Phys. Rev. D 86, 052008 (2012). doi: 10.1103/PhysRevD.86.052008http://doi.org/10.1103/PhysRevD.86.052008
H. Yang, D. Cao, Z. Qian et al., Light attenuation length of high quality linear alkyl benzene as liquid scintillator solvent for the JUNO experiment. JINST 12, T11004 (2017). doi: 10.1088/1748-0221/12/11/T11004http://doi.org/10.1088/1748-0221/12/11/T11004
P.W. Huang, P.Y. Li, Z.W. Fu et al., Study of attenuation length of linear alkyl benzene as LS solvent. JINST 5, P08007 (2010). doi: 10.1088/1748-0221/5/08/P08007http://doi.org/10.1088/1748-0221/5/08/P08007
P.W. Huang, H.Y. Cao, M. Qi et al., Theoretical study of UV-Vis light absorption of some impurities in alkylbenzene type liquid scintillator solvents. Theor. Chem. Acc. 129, 229 (2011). doi: 10.1007/s00214-011-0926-8http://doi.org/10.1007/s00214-011-0926-8
F. Baldini, A. Giannetti, Optical chemical and biochemical sensors: New trends, Opt. Sens. Spectrosc. 5826, 485 (2005). doi: 10.1117/12.610653http://doi.org/10.1117/12.610653
IUPAC, Compendium of Chemical Terminology, 2nd ed (Blackwell Scientific, Oxford, 1997). doi: 10.1351/goldbookhttp://doi.org/10.1351/goldbook.
Z. Ning, S. Qian, Z. Fu et al., A data acquisition system based on general VME system in WinXP (in Chinese). Nucl. Tech. 33, 740 (2010)
J. Goett, J. Napolitano, M. Yeh et al, Optical attenuation measurements in metal-loaded liquid scintillators with a long-pathlength photometer, Nucl. Instr. Meth. A 637, 47-52 (2011). doi: 10.1016/j.nima.2011.02.051http://doi.org/10.1016/j.nima.2011.02.051
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution