1.Osmaniye Korkut Ata University, Faculty of Arts and Sciences, Department of Physics, 80000 Osmaniye, Turkey.
Corresponding author E-mail: hakanozturk@osmaniye.edu.tr
Scan for full text
Hakan Öztürk, Ökkeş Ege. Solution of the finite slab criticality problem using an alternative phase function with the second kind of Chebyshev polynomials. [J]. Nuclear Science and Techniques 30(2):29(2019)
Hakan Öztürk, Ökkeş Ege. Solution of the finite slab criticality problem using an alternative phase function with the second kind of Chebyshev polynomials. [J]. Nuclear Science and Techniques 30(2):29(2019) DOI: 10.1007/s41365-019-0552-z.
The critical size of a finite homogenous slab is investigated for one-speed neutrons using the alternative phase function (AG, Anlı-Güngör) in place of the scattering function of the transport equation. First, the neutron angular flux expanded in terms of the Chebyshev polynomials of second kind (,U,N, approximation) together with the AG phase function is applied to the transport equation to obtain a criticality condition for the system. Then, using various values of the scattering parameters, the numerical results for the critical half-thickness of the slab are calculated and they are tabulated in the tables together with the ones obtained from the conventional spherical harmonics (,P,N,) method for comparison. They can be said to be in good accordance with each other.
Criticality problemUN methodneutron transport equationalternative phase function.
B. Davison, Neutron transport theory. 1st edn. (London, Oxford University Press, 1958), pp. 116-144
K.M. Case, P.F. Zweifel, Linear transport theory, 1st edn. (Addison-Wesley Publishing Company, 1967), pp. 10-45.
G.I. Bell, S. Glasstone, Nuclear reactor theory, 1st edn. (New York, VNR Company, 1972), pp. 33-72.
D.C. Sahni, N.G. Sjöstrand, N.S. Garis, Criticality and time eigenvalues for one-speed neutrons in a slab with forward and backward scattering. J. Phys. D: Appl. Phys. 25, 1381-1389 (1992). doi: 10.1088/0022-3727/25/10/001http://doi.org/10.1088/0022-3727/25/10/001
L.G. Henyey, J.L. Greenstein, Diffuse radiation in the galaxy. Astrophys. J. 93, 70-83 (1941). doi: 10.1086/144246http://doi.org/10.1086/144246
L.O. Reynolds, N.J. McCormic, Approximate two parameter phase function for light scattering, J. Optical Soc. America., 70, 1206-1212 (1980). doi: 10.1364/JOSA.70.001206http://doi.org/10.1364/JOSA.70.001206
M.M.R. Williams, A synthetic scattering kernel for particle transport in absorbing media with anisotropic scattering, J. Phys. D: Appl. Phys. 11, 2455-2463 (1978). doi: 10.1088/0022-3727/11/18/004http://doi.org/10.1088/0022-3727/11/18/004
P. Liu, A new phase function approximating to mie scattering for radiative transport equations, Phys. Med. and Bio. 39, 1025-1036 (1994). doi: 10.1088/0031-9155/39/6/008http://doi.org/10.1088/0031-9155/39/6/008
F. Anlı, F. Yaşa, S. Güngör, General eigenvalue spectrum in a one-dimensional slab geometry transport equation. Nucl. Sci. Eng. 150, 72-77 (2005).
H. Öztürk, F. Anlı, Diffusion approximation for certain scattering parameters of the Anli-Güngör phase function. Kerntechnik 77, 381-384 (2012). doi: 10.3139/124.110216http://doi.org/10.3139/124.110216
H. Öztürk, Application of the Henyey-Greenstein and Anlı-Güngör phase functions for the solution of the neutron transport equation with Legendre polynomials: Reflected critical slab problem. Kerntechnik 78, 447-453 (2013). doi: 10.3139/124.110328http://doi.org/10.3139/124.110328
F. Anlı, S. Güngör, Some useful properties of Legendre polynomials and its applications to neutron transport equation in slab geometry, Appl. Math. Mod. 31, 727-733 (2007). doi: 10.1016/j.apm.2005.12.005http://doi.org/10.1016/j.apm.2005.12.005
H. Öztürk, The reflected critical slab problem for one-speed neutrons with strongly anisotropic scattering. Kerntechnik 73, 66-74 (2008). doi: 10.3139/124.100532http://doi.org/10.3139/124.100532
G. Arfken, Mathematical methods for physicists. 3rd edn. (London, Academic Press, Inc., 1985), pp. 817-879
H. Öztürk, F. Anlı, S. Güngör, Application of the UN method to the reflected critical slab problem for one-speed neutrons with forward and backward scattering. Kerntechnik 72, 74-76 (2007). doi: 10.3139/124.100321http://doi.org/10.3139/124.100321
C.E. Lee, M.P. Dias, Analytical solutions to the moment transport equations-I; one-group one-region slab and sphere criticality. Ann. Nucl. Energy 11, 515-530 (1984). doi: 10.1016/0306-4549(84)90076-8http://doi.org/10.1016/0306-4549(84)90076-8
C. Yıldız, Variation of the critical slab thickness with the degree of strongly anisotropic scattering in one-speed neutron transport theory, Ann. Nucl. Energy, 25, 529-540 (1998). doi: 10.1016/S0306-4549(97)00114-Xhttp://doi.org/10.1016/S0306-4549(97)00114-X
D.C. Sahni, N.G. Sjöstrand, Non-monotonic variation of the criticality factor with the degree of anisotropy in one-speed neutron transport, Trans. Theory Statis. Phys. 20, 339-349 (1991).
F. Yaşa, F. Anlı, S. Güngör, Eigenvalue spectrum with Chebyshev polynomial approximation of the transport equation in slab geometry, J. Quant. Spectros. Rad. Transf. 97, 51-57 (2006). doi: 10.1016/j.jqsrt.2004.12.017http://doi.org/10.1016/j.jqsrt.2004.12.017
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution