Synchrotron infrared spectral regions as signatures for foodborne bacterial typing
NUCLEAR PHYSICS AND INTERDISCIPLINARY RESEARCH|Updated:2021-02-01
|
Synchrotron infrared spectral regions as signatures for foodborne bacterial typing
Nuclear Science and TechniquesVol. 30, Issue 2, Article number: 25(2019)
Affiliations:
1.Division of Physical Biology and CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS), Shanghai 201800, China.
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.Shanghai Center for Bioinformation Technology, Shanghai Industrial Technology Institute, Shanghai 201203, China.
Ya-Di Wang, Xue-Ling Li, Jun Hu, et al. Synchrotron infrared spectral regions as signatures for foodborne bacterial typing. [J]. Nuclear Science and Techniques 30(2):25(2019)
DOI:
Ya-Di Wang, Xue-Ling Li, Jun Hu, et al. Synchrotron infrared spectral regions as signatures for foodborne bacterial typing. [J]. Nuclear Science and Techniques 30(2):25(2019) DOI: 10.1007/s41365-019-0554-x.
Synchrotron infrared spectral regions as signatures for foodborne bacterial typing
摘要
Abstract
Fourier transform infrared (FTIR) spectroscopy has emerged as a viable alternative to biochemical and molecular biology techniques for bacterial typing with advantages such as short analysis time, low cost, and laboratorial simplicity. In this study, synchrotron radiation-based FTIR (SR-FTIR) spectroscopy with higher spectral quality was successfully applied to 16 types foodborne pathogenic bacteria. Combined with principal component analysis (PCA) and hierarchical cluster analysis (HCA), we found that the specific spectral region is 1300-1000 cm,-1, which reflects the information of phosphate compounds and polysaccharides, and can be used as the signature region to cluster the strains into a similar groups with this genetic taxonomic method. These findings demonstrated that FTIR spectra combined with HCA have a great potential in quickly typing bacteria depending on their biochemical signatures.
J.W. Law, N.S. Ab Mutalib, K.G. Chan, et al., Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front. Microbiol. 5, 770 (2014). DOI: 10.3389/fmicb.2014.00770http://doi.org/10.3389/fmicb.2014.00770.
C.C. Thompson, L. Chimetto, R.A. Edwards, et al., Microbial genomic taxonomy. BMC Genomics. 14, 913-913 (2013). DOI: 10.1186/1471-2164-14-913http://doi.org/10.1186/1471-2164-14-913.
C. Quintelas, E.C. Ferreira, J.A. Lopes, et al., An overview of the evolution of infrared spectroscopy applied to bacterial typing. Biotechnol. J. 13 (2017). DOI: 10.1002/biot.201700449http://doi.org/10.1002/biot.201700449.
J.P. Harrison and D. Berry. Vibrational Spectroscopy for Imaging Single Microbial Cells in Complex Biological Samples. Front. Microbiol. 8, 675 (2017). DOI: 10.3389/fmicb.2017.00675http://doi.org/10.3389/fmicb.2017.00675.
X. Lu, H.M. Al-Qadiri, M. Lin, et al., Application of Mid-infrared and Raman Spectroscopy to the Study of Bacteria. Food Bioprocess Tech. 4, 919-935 (2011). DOI: 10.1007/s11947-011-0516-8http://doi.org/10.1007/s11947-011-0516-8.
M. Wenning and S. Scherer. Identification of microorganisms by FTIR spectroscopy: perspectives and limitations of the method. Appl. Microbiol. Biotechnol. 97(16), 7111-7120 (2013). DOI: 10.1007/s00253-013-5087-3http://doi.org/10.1007/s00253-013-5087-3.
D. Naumann, D. Helm and H. Labischinski. Microbiological characterizations by FT-IR spectroscopy. Nature. 351, 81-82 (1991). DOI: 10.1038/351081a0http://doi.org/10.1038/351081a0.
D. Helm, H. Labischinski, G. Schallehn, et al., Classification and identification of bacteria by Fourier-transform infrared spectroscopy. J. Gen. Microbiol. 137, 69-79 (1991). DOI: 10.1099/00221287-137-1-69http://doi.org/10.1099/00221287-137-1-69.
Y.D. Wang, X.L. Li, Z.X. Liu, et al., Discrimination of foodborne pathogenic bacteria using synchrotron FTIR microspectroscopy. Nucl. Sci. Tech. 28, 38-43 (2017). DOI: 10.1007/s41365-017-0209-8http://doi.org/10.1007/s41365-017-0209-8.
S. Passot, J. Gautier, F. Jamme, et al., Understanding the cryotolerance of lactic acid bacteria using combined synchrotron infrared and fluorescence microscopies. Analyst. 140, 5920-5928 (2015). DOI: 10.1039/c5an00654fhttp://doi.org/10.1039/c5an00654f.
R. Davis and L.J. Mauer. Fourier transform infrared (FT-IR) spectroscopy: A rapid tool for detection and analysis of foodborne pathogenic bacteria. Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. 1582-1594 (2010).
M. Wenning, F. Breitenwieser, R. Konrad, et al., Identification and differentiation of food-related bacteria: A comparison of FTIR spectroscopy and MALDI-TOF mass spectrometry. J. Microbiol. Methods. 103, 44-52 (2014). DOI: 10.1016/j.mimet.2014.05.011http://doi.org/10.1016/j.mimet.2014.05.011.
O.E. Preisner, J.C. Menezes, R. Guiomar, et al., Discrimination of Salmonella enterica serotypes by Fourier transform infrared spectroscopy. Food Res. Int. 45, 1058-1064 (2012). DOI: 10.1016/j.foodres.2011.02.029http://doi.org/10.1016/j.foodres.2011.02.029.
X.J. Hu, Z.X. Liu, Y.D. Wang, et al., Synchrotron FTIR spectroscopy reveals molecular changes in Escherichia coli upon Cu2+ exposure. Nucl. Sci. Tech. 27, 45-52 (2016). DOI: 10.1007/s41365-016-0067-9http://doi.org/10.1007/s41365-016-0067-9.
J.P. Maity, S. Kar, C.M. Lin, et al., Identification and discrimination of bacteria using Fourier transform infrared spectroscopy. Spectrochimica Acta Part A Mol. Biomol. Spectrosc. 116, 478-484 (2013). DOI: 10.1016/j.saa.2013.07.062http://doi.org/10.1016/j.saa.2013.07.062.
A. Alvarez-Ordóñez, D.J.M. Mouwen, M. López, et al., Fourier transform infrared spectroscopy as a tool to characterize molecular composition and stress response in foodborne pathogenic bacteria. J. Microbiol. Methods. 84, 369-378 (2011). DOI: 10.1016/j.mimet.2011.01.009http://doi.org/10.1016/j.mimet.2011.01.009.
M.A. Alruwaili. Attenuated Total Reflectance-Fourier-Transform Infrared Microspectroscopy a Rapid Method for Microbial Strain Characterization. American Journal of Agricultural and Biological Sciences. 8, 135-141 (2013). DOI: 10.3844/ajabssp.2013.135.141http://doi.org/10.3844/ajabssp.2013.135.141.
D.J.M. Mouwen, A. Hörman, H. Korkeala, et al., Applying Fourier-transform infrared spectroscopy and chemometrics to the characterization and identification of lactic acid bacteria. Vib. Spectrosc. 56, 193-201 (2011). DOI: 10.1016/j.vibspec.2011.02.008http://doi.org/10.1016/j.vibspec.2011.02.008.
D. Ami, P. Mereghetti, S.M. Doglia. Multivariate Analysis for Fourier Transform Infrared Spectra of Complex Biological Systems and Processes. Multivar. Anal. Manag. Eng. Sci., 189-220 (2013). DOI: 10.5772/53850http://doi.org/10.5772/53850.
D. Naumann. Infrared spectroscopy in microbiology. Encyclopedia of Analytical Chemistry. 1-29 (2000). DOI: 10.1002/9780470027318.a0117http://doi.org/10.1002/9780470027318.a0117.