1.Accelerator Laboratory, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
2.Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084, China
3.Nuctech Company Limited, Beijing 100084, China
Corresponding author, tang.xuh@tsinghua.edu.cn
Scan for full text
Cheng-Jun Tan, Chuan-Xiang Tang, Wen-Hui Huang, et al. Beam and image experiment of beam deflection electron gun for distributed X-ray sources. [J]. Nuclear Science and Techniques 30(3):50(2019)
Cheng-Jun Tan, Chuan-Xiang Tang, Wen-Hui Huang, et al. Beam and image experiment of beam deflection electron gun for distributed X-ray sources. [J]. Nuclear Science and Techniques 30(3):50(2019) DOI: 10.1007/s41365-019-0561-y.
Distributed X-ray sources comprise a single vacuum chamber containing multiple X-ray sources that are triggered and emit X-rays at a specific time and location. This process facilitates an application for innovative system concepts in X-ray and computer tomography (CT). This paper proposes a novel electron beam focusing, shaping, and deflection electron gun for distributed X-ray sources. The electron gun uses a dispenser cathode as an electron emitter, a mesh grid to control emission current, and two electrostatic lenses for beam shaping, focusing, and deflection. Novel focusing and deflecting electrodes were designed to increase the number of focal spots in the distributed source. Two identical half-rectangle opening electrodes are controlled by adjusting the potential of the two electrodes to control the electron beam trajectory, and then multi-focal spots are obtained on the anode target. The electron gun can increase the spatial density of the distributed X-ray sources, thereby improving the image quality. The beam experimental results show that the focal spot sizes of the deflected (deflected amplitude, 10.5 mm) and non-deflected electron beams at full width at half maximum (FWHM) are 0.80 mm × 0.50 mm and 0.55 mm × 0.40 mm, respectively (anode voltage, 160 kV; beam current, 30 mA). The imaging experimental results demonstrate the excellent spatial resolution and time resolution of an imaging system built with the sources, which has an excellent imaging effect on a field-programmable gate array (FPGA) chip and a rotating metal disk.
Beam deflection electron gunX-ray imagingDistributed X-ray sourcesStationary CT
R. A. Robb, E. A. Hoffman, L. J. Sinak et al. High-speed three-dimensional X-ray computed tomography: The dynamic spatial reconstructor, Pro. IEEE. 71, 3 (1983). doi: 10.1109/PROC.1983.12589http://doi.org/10.1109/PROC.1983.12589
Y. F. Yang, D. H. Zhang, K. D. Huang et al. Three-dimensional weighting reconstruction algorithm for circular cone-beam CT under large scan angles. Nucl. Sci. Tech. 27, 116 (2017). doi: 10.1007/s41365-017-0262-3http://doi.org/10.1007/s41365-017-0262-3
G. Wang, T. H. Lin, P. C. Cheng et al. A general cone beam reconstruction algorithm, IEEE Trans. Med. Imaging.12,486-496 (1993). doi: 10.1109/42.241876http://doi.org/10.1109/42.241876
C. Zhang, X. D. Pan, H. J. Shang et al. Improvements to conventional X-ray tube-based cone-beam computed tomography system. Nucl. Sci. Tech. 29, 43 (2018). doi: 10.1007/s41365-018-0370-8http://doi.org/10.1007/s41365-018-0370-8
W. A. Kalender, Thin-section three-dimensional spiral CT: Is isotropic imaging possible. Radiology. 197, 578-580 (1995). doi: 10.1148/radiology.197.3.7480719http://doi.org/10.1148/radiology.197.3.7480719
P. Michael, B. D. Man, B. Kristiaan. Stationary computed tomography system and method. U.S. Patent 7 280 631, Oct. 9, 2007.
V. B. Neculaes, P. M. Edic, M. Frontera et al. Multisource x-ray and CT: Lessons learned and future outlook. IEEE Access, 2, 1568-1585 (2014). doi: 10.1109/ACCESS.2014.2363949http://doi.org/10.1109/ACCESS.2014.2363949
G. Wang, H.Y. Yu, B.D. Man. An outlook on x-ray CT research and development. Med. Phys. 35, 1051-1064 (2008). doi: 10.1118/1.2836950http://doi.org/10.1118/1.2836950
R. Behling. Medical X-ray sources now and for the future. Nucl. Instrum. Methods A. 873, 43-50. (2017). doi: 10.1016/j.nima.2017.05.038http://doi.org/10.1016/j.nima.2017.05.038
C. A. Spindt. A thin-film field-emission cathode. J. Appl. Phys. 39, 3504 (1968). doi: 10.1063/1.1656810http://doi.org/10.1063/1.1656810
C. A. Spindt, I. Brodie, L. Humphrey et al. Physical properties of thin-film field emission cathodes with molybdenum cones, J. Appl. Phys. 47, 5248 (1976). doi: 10.1063/1.322600http://doi.org/10.1063/1.322600
P. R. Schwoebel, J. M. Boone, J. Shao. Studies of a prototype linear stationary X-ray source for tomosynthesis imaging. Phys. Med. Biol. 59, 2393-2413 (2014). doi: 10.1088/0031-9155/59/10/2393http://doi.org/10.1088/0031-9155/59/10/2393
X. S. Wang, Q. Q. Li, J. Xie et al. Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett. 9, 3137-3141 (2009). doi: 10.1021/nl901260bhttp://doi.org/10.1021/nl901260b
X. Qian, A. Tucker, E. Gidcumb et al. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube X-ray source array. Med Phys. 39,2090-2099(2012). doi: 10.1118/1.3694667http://doi.org/10.1118/1.3694667
G. Yang, R. Rajaram, G. H. Cao et al. Stationary digital breast tomosynthesis system with a multi-beam field emission x-ray source array. Proc. SPIE. 6913, Medical Imaging 2008: Physics of Medical Imaging, 69131A (2008). doi: 10.1117/12.770622http://doi.org/10.1117/12.770622
F. Sprenger, X. Calderon, Y. Cheng et al, Distributed source X-ray tube technology for tomosynthesis imaging. Proc. SPIE, 7622, Medical Imaging 2010: Physics of Medical Imaging, 76225M (2010). doi: 10.1117/12.844586http://doi.org/10.1117/12.844586
J. M. Bonard, C. Klinke, K. A. Dean et al. Degradation and failure of carbon nanotube field emitters. Phy. Rev. B. 67, 115406 (2003). doi: 10.1103/PhysRevB.67.115406http://doi.org/10.1103/PhysRevB.67.115406
X. C. Xu, J. Kim, P. Laganis et al. A tetrahedron beam computed tomography benchtop system with a multiple pixel field emission X-ray tube. Med Phys. 38, 5500-5508(2011). doi: 10.1118/1.3634043http://doi.org/10.1118/1.3634043
V. B. Neculaes, Y. Zou, P. Zavodszky et al. Design and characterization of electron beam focusing for X-ray generation in novel medical imaging architecture. Phys. Plasmas. 21, 056702 (2014). doi: 10.1063/1.4872033http://doi.org/10.1063/1.4872033
K. Frutschy, B. D. Man, P. Edic et al. X-ray Multisource for Medical Imaging. Proc. SPIE.7258,Medical Imaging 2009, Physics of Medical Imaging; 725822 (2009). doi: 10.1117/12.812043http://doi.org/10.1117/12.812043
V. B. Neculaes, A. Caiafa, Y. Cao et al. Multisource inverse-geometry CT. Part II. X-ray source design and prototype. Med Phys. 43, 4617-4627(2016). doi: 10.1118/1.4954847http://doi.org/10.1118/1.4954847
L. Lanca, A. Silva. Digital Imaging Systems for Plain Radiography, Springer, New York, NY, 2013, PP. 25-30. doi: 10.1007/978-1-4614-5067-2http://doi.org/10.1007/978-1-4614-5067-2
Z. Zhou, F. Gao, H. Zhao, et al. Effect of background trends removal on noise power spectrum measurements in digital x-ray imaging. Proc. SPIE. 7890, Advanced Biomedical and Clinical Diagnostic Systems IX; 78901F (2011), doi: 10.1117/12.871053http://doi.org/10.1117/12.871053
IIIJ.T. Dobbins, E. Samei, N.T. Ranger, et al. Intercomparison of methods for image quality characterization. II. Noise power spectrum. Med. Phys. 33, 1466-1475 (2006), doi: 10.1118/1.2188819http://doi.org/10.1118/1.2188819
J. T. Bushberg, J. A. Seibert, E. M. Leidholdt, et al. The Essential Physics of Medical Imaging, Lippincott Williams and Wilkins, Second Edition, 2002, pp. 31-44. doi: 10.1007/s00259-002-1073-1http://doi.org/10.1007/s00259-002-1073-1
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution