Investigation of maximum proton energy for qualified ground-based evaluation of single event effects in SRAM devices
NUCLEAR ELECTRONICS AND INSTRUMENTATION|Updated:2021-02-01
|
Investigation of maximum proton energy for qualified ground-based evaluation of single event effects in SRAM devices
Nuclear Science and TechniquesVol. 30, Issue 3, Article number: 47(2019)
Affiliations:
1.Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510610, China
Zhan-Gang Zhang, Yun Huang, Yun-Fei En, et al. Investigation of maximum proton energy for qualified ground-based evaluation of single event effects in SRAM devices. [J]. Nuclear Science and Techniques 30(3):47(2019)
DOI:
Zhan-Gang Zhang, Yun Huang, Yun-Fei En, et al. Investigation of maximum proton energy for qualified ground-based evaluation of single event effects in SRAM devices. [J]. Nuclear Science and Techniques 30(3):47(2019) DOI: 10.1007/s41365-019-0570-x.
Investigation of maximum proton energy for qualified ground-based evaluation of single event effects in SRAM devices
摘要
Abstract
Existing standards show a clear discrepancy in the specification of the maximum proton energy for qualified ground-based evaluation of single event effects, which can range from 180 MeV to 500 MeV. This work finds that the threshold linear energy transfer (LET) of a tested device is a critical parameter for determining the maximum proton energy. The inner mechanisms are further revealed. High-energy deposition events (>10 MeV) in sensitive volumes are attributed to the interaction between protons and the tungsten vias in the metallization layers.
关键词
Keywords
ProtonSingle event effectThreshold LETMonte Carlo simulation
references
P. E. Dodd, M. R. Shaneyfelt, J. R. Schwank et al., Current and future challenges in radiation effects on CMOS electronics. IEEE Trans. Nucl. Sci. 57, 1747-1763 (2010). DOI: 10.1109/TNS.2010.2042613http://doi.org/10.1109/TNS.2010.2042613
K. P. Rodbell, D. F. Heidel, H. H. K. Tang et al., Low-energy proton-induced single-event-upsets in 65 nm node, silicon-on-insulator, latches and memory cells. IEEE Trans. Nucl. Sci. 54, 2474-2479 (2007). DOI: 10.1109/TNS.2007.909845http://doi.org/10.1109/TNS.2007.909845
D. F. Heidel, P. W. Marshall, K. A. LaBel et al., Low energy proton single-event-upset test results on 65 nm SOI SRAM. IEEE Trans. Nucl. Sci. 55, 3394-3400 (2008). DOI: 10.1109/TNS.2008.2005499http://doi.org/10.1109/TNS.2008.2005499
D. F. Heidel, P. W. Marshall, J. A. Pellish et al., Single-event upsets and multiple-bit upsets on a 45 nm SOI SRAM. IEEE Trans. Nucl. Sci. 56, 3499-3504 (2009). DOI: 10.1109/TNS.2009.2033796http://doi.org/10.1109/TNS.2009.2033796
B. D. Sierawski, J. A. Pellish, R. A. Reed et al., Impact of low-energy proton induced upsets on test methods and rate predictions. IEEE Trans. Nucl. Sci. 56, 3085-3092 (2009). DOI: 10.1109/TNS.2009.2032545http://doi.org/10.1109/TNS.2009.2032545
R. K. Lawrence, J. F. Ross, N. F. Haddad et al., Soft error sensitivities in 90 nm bulk CMOS SRAMs. 2009 IEEE Radiation Effects Data Workshop, Quebec City, QC, Canada, 20-24 July 2009, pp. 123-126. DOI: 10.1109/REDW.2009.5336302http://doi.org/10.1109/REDW.2009.5336302
E. H. Cannon, M. Cabanas-Holmen, J. Wert et al., Heavy ion, high-energy, and low-energy proton SEE sensitivity of 90-nm RHBD SRAMs. IEEE Trans. Nucl. Sci. 57, 3493-3499 (2010). DOI: 10.1109/TNS.2010.2086482http://doi.org/10.1109/TNS.2010.2086482
N. F. Haddad, A. T. Kelly, R. K. Lawrence et al., Incremental enhancement of SEU hardened 90 nm CMOS memory cell. IEEE Trans. Nucl. Sci. 58, 975-980 (2011). DOI: 10.1109/TNS.2011.2128882http://doi.org/10.1109/TNS.2011.2128882
J. R. Schwank, M. R. Shaneyfelt, and P. E. Dodd, Radiation hardness assurance testing of microelectronic devices and integrated circuits: radiation environments, physical mechanisms, and foundations for hardness assurance. IEEE Tran. Nucl. Sci. 60, 2074-2100 (2013). DOI: 10.1109/TNS.2013.2254722http://doi.org/10.1109/TNS.2013.2254722
J. R. Schwank, M. R. Shaneyfelt, and P. E. Dodd, Radiation hardness assurance testing of microelectronic devices and integrated circuits: test guideline for proton and heavy ion single-event effects. IEEE Tran. Nucl. Sci. 60, 2101-2118 (2013). DOI: 10.1109/TNS.2013.2261317http://doi.org/10.1109/TNS.2013.2261317
J. R. Schwank, M. R. Shaneyfelt, J. Baggio et al., Effects of particle energy on proton-induced single-event latchup. IEEE Tran. Nucl. Sci. 52, 2622-2629 (2005). DOI: 10.1109/TNS.2005.860672http://doi.org/10.1109/TNS.2005.860672
P. M. O'Neill, G. D. Badhwar, and W. X. Culpepper, Risk assessment for heavy ions of parts tested with protons. IEEE Tran. Nucl. Sci. 44, 2311-2314 (1997). DOI: 10.1109/23.659052http://doi.org/10.1109/23.659052
P. M. O'Neill, G. D. Badhwar, and W. X. Culpepper, Internuclear cascade-evaporation model for LET spectra of 200 MeV protons used for parts testing. IEEE Tran. Nucl. Sci. 45, 2467-2474 (1998). DOI: 10.1109/23.736487http://doi.org/10.1109/23.736487
D. M. Hiemstra and E.W. Blackmore, LET spectra of proton energy levels from 50 to 500 MeV and their effectiveness for single event effects characterization of microelectronics. IEEE Tran. Nucl. Sci. 50, 2245-2250 (2003). DOI: 10.1109/TNS.2003.821811http://doi.org/10.1109/TNS.2003.821811
C. C. Foster, P. M. O'Neill, and C. K. Kouba, Risk assessment based on upset rates from high energy proton tests and Monte Carlo simulations. IEEE Tran. Nucl. Sci. 55, 2962-2969 (2008). DOI: 10.1109/TNS.2008.2008185http://doi.org/10.1109/TNS.2008.2008185
R. L. Ladbury, J. M. Lauenstein, and K. P. Hayes, Use of proton SEE data as a proxy for bounding heavy-ion SEE susceptibility. IEEE Tran. Nucl. Sci. 62, 2505-2510 (2015). DOI: 10.1109/TNS.2015.2496351http://doi.org/10.1109/TNS.2015.2496351
R. L. Ladbury and J. M. Lauenstein, Evaluating constraints on heavy-ion SEE susceptibility imposed by proton SEE testing and other mixed environments. IEEE Tran. Nucl. Sci. 64, 301-308 (2017). DOI: 10.1109/TNS.2016.2640948http://doi.org/10.1109/TNS.2016.2640948
R. G. Alía, M. Brugger, E. Daly et al., Simplified SEE sensitivity screening for COTS components in space. IEEE Tran. Nucl. Sci. 64, 882-890 (2017). DOI: 10.1109/TNS.2017.2653863http://doi.org/10.1109/TNS.2017.2653863
ESCC Basic Specification 25100, Single event effects test method and guidelines, 2002
Sandia National Laboratories Document SAND 2008-6983P, Radiation hardness assurance testing of microelectronic devices and integrated circuits: Test guideline for proton and heavy ion single-event effects, 2008
E. G. Stassinopoulos and J. P. Raymond, The space radiation environment for electronics. Proc. of the IEEE. 76, 1423-1442 (1988). DOI: 10.1109/5.90113http://doi.org/10.1109/5.90113
JESD234, Test standard for the measurement of proton radiation single event effects in electronic devices, 2013
A. J. Tylka, J. H. Adams, P. R. Boberg et al., CREME96: a revision of the cosmic ray effects on micro-electronics code. IEEE Tran. Nucl. Sci. 44, 2150-2160 (1997).
K. M. Warren, R. A. Weller, M. H. Mendenhall et al., The contribution of nuclear reactions to heavy ion single event upset cross-section measurements in a high-density SEU hardened SRAM. IEEE Trans. Nucl. Sci. 52, 2125-2131 (2005). DOI: 10.1109/TNS.2005.860677http://doi.org/10.1109/TNS.2005.860677
R. A. Reed, R. A. Weller, M. H. Mendenhall et al., Impact of ion energy and species on single event effects analysis. IEEE Trans. Nucl. Sci. 54, 2312-2321 (2007). DOI: 10.1109/TNS.2007.909901http://doi.org/10.1109/TNS.2007.909901
S. Agostinelli, J. Allison, K. Amako et al., GEANT4-a simulation toolkit. Nucl. Instrum. Meth. Phys. Res. A. 506, 250-303 (2003). DOI: 10.1016/S0168-9002(03)01368-8http://doi.org/10.1016/S0168-9002(03)01368-8
R. A. Weller, M. H. Mendenhall, R. A. Reed et al., Monte Carlo simulation of single event effects. IEEE Tran. Nucl. Sci. 57, 1726-1746 (2010). DOI: 10.1109/TNS.2010.2044807http://doi.org/10.1109/TNS.2010.2044807
J. H. Adams, A. F. Barghouty, M. H. Mendenhall et al., CRÈME: the 2011 revision of the cosmic ray effects on micro-electronics code. IEEE Tran. Nucl. Sci. 59, 3141-3147(2012). DOI: 10.1109/TNS.2012.2218831http://doi.org/10.1109/TNS.2012.2218831
A characterization study on perovskite X-ray detector performance based on a digital radiography system
Quantitative modeling, optimization, and verification of 63Ni-powered betavoltaic cells based on three-dimensional ZnO nanorod arrays
Hybrid model for muon tomography and quantitative analysis of image quality
Monte Carlo simulation of neutron sensitivity of microfission chamber in neutron flux measurement
A novel 4D resolution imaging method for low and medium atomic number objects at the centimeter scale by coincidence detection technique of cosmic-ray muon and its secondary particles
Related Author
No data
Related Institution
University of Electronic Science and Technology of China
Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University