1.Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
4.China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Sciences, Dongguan 523803, China
Corresponding author, jiaoyi@ihep.ac.cn
Scan for full text
Wei-Hang Liu, Yi Wu, Yi Jiao, et al. Generation of two-color polarization-adjustable radiation pulses for storage ring light source. [J]. Nuclear Science and Techniques 30(4):66(2019)
Wei-Hang Liu, Yi Wu, Yi Jiao, et al. Generation of two-color polarization-adjustable radiation pulses for storage ring light source. [J]. Nuclear Science and Techniques 30(4):66(2019) DOI: 10.1007/s41365-019-0578-2.
To date, two-color pulses are widely used in pump–probe experiments. For a ring-based light source, the power of the spontaneous radiation fluctuates randomly in the longitudinal direction. It is difficult to produce two-color double pulses by optical methods. In this paper, we introduce a method based on the echo-enabled harmonic generation scheme that generates two-color pulses in a storage ring light source. By adopting crossed undulators and a phase shifter, the polarization of the two-color pulses can be easily switched. A numerical simulation of a diffraction-limited storage ring, the Hefei Advanced Light Source, suggests that the time delay and spectral separation of the two pulses can be adjusted linearly by changing the pulse duration and chirp parameters of the seed laser. A circular polarization degree above 80% could be achieved.
Two-color pulsesEcho-enabled harmonic generationDiffraction-limited storage ringCrossed undulatorsCircular polarization
A. Röhm, Dynamic Scenarios in Two-State Quantum Dot Lasers: Excited State Lasing, Ground State Quenching, and Dual-Mode Operation, (Springer, 2015).
H. Anetai,T. Takeda,N. Hoshino, et al., Circular Polarized Luminescence of Hydrogen-Bonded Molecular Assemblies of Chiral Pyrene Derivatives. J. Phys. Chem. C 122, 6323 (2018). doi: 10.1021/acs.jpcc.7b12747http://doi.org/10.1021/acs.jpcc.7b12747
P. Emma, K. Bane, M. Cornacchia, et al., Femtosecond and subfemtosecond X-ray pulses from a self-amplified spontaneous-emission?based free-electron laser. Phys. Rev. Lett. 92, 074801 (2004). doi: 10.1103/PhysRevLett.92.074801http://doi.org/10.1103/PhysRevLett.92.074801
A. A. Lutman, R. Coffee, Y. Ding, et al., Experimental demonstration of femtosecond two-color x-ray free-electron lasers. Phys. Rev. Lett. 110, 134801 (2013). doi: 10.1103/PhysRevLett.110.134801http://doi.org/10.1103/PhysRevLett.110.134801
A. Lutman, T. Maxwell, J. MacArthur, et al., Fresh-slice multicolour X-ray free-electron lasers. Nat. Photon. 10, 745 (2016).doi: 10.1038/nphoton.2016.201http://doi.org/10.1038/nphoton.2016.201
R. Bonifacio, C. Pellegrini, L.M. Narducci, Collective instabilities and high-gain regime free electron laser. AIP Conference Proceedings. 118, 236 (1984). doi: 10.1063/1.34640http://doi.org/10.1063/1.34640
L. H. Yu, Generation of intense UV radiation by subharmonically seeded single-pass free-electron lasers. Phys. Rev. A 44, 5178 (1991). doi: 10.1103/PhysRevA.44.5178http://doi.org/10.1103/PhysRevA.44.5178
G. Stupakov, Using the beam-echo effect for generation of short-wavelength radiation. Phys. Rev. Lett. 102, 074801 (2009). doi: 10.1103/PhysRevLett.102.074801http://doi.org/10.1103/PhysRevLett.102.074801
D. Xiang, G. Stupakov, Echo-enabled harmonic generation free electron laser. Phys. Rev. ST Accel. Beams 12, 030702 (2009). doi: 10.1103/PhysRevSTAB.12.030702http://doi.org/10.1103/PhysRevSTAB.12.030702
E. Allaria, R. Appio, L. Badano, et al., Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nature Photonics 6, 699 (2012). doi: 10.1038/nphoton.2012.233http://doi.org/10.1038/nphoton.2012.233
E. Allaria, F. Bencivenga, R. Borghes, et al., Two-colour pump?probe experiments with a twin-pulse-seed extreme ultraviolet free-electron laser. Nature communications 4, 2476 (2013). doi: 10.1038/ncomms3476http://doi.org/10.1038/ncomms3476
B. Mahieu, E. Allaria, D. Castronovo, et al., Two-colour generation in a chirped seeded free-electron laser: a close look. Optics express 21, 22728 (2013). doi: 10.1364/OE.21.022728http://doi.org/10.1364/OE.21.022728
C. Feng, Z. Wang, X. Wang, et al., Generation of two-color ultra-short radiation pulses from two electron bunches and a chirped seeded free-electron laser. Nuclear Inst.and Methods in Physics Research, A 807, 79 (2016). doi: 10.1016/j.nima.2015.11.001http://doi.org/10.1016/j.nima.2015.11.001
S. Sasaki, Analyses for a planar variably-polarizing undulator. Nuclear Inst.and Methods in Physics Research, A 347, 83 (1994). doi: 10.1016/0168-9002(94)91859-7http://doi.org/10.1016/0168-9002(94)91859-7
J. Bahrdt, W. Frentrup, A. Gaupp, et al., Magnetic field optimization of permanent magnet undulators for arbitrary polarization. Nuclear Inst.and Methods in Physics Research, A 516, 575 (2004). doi: 10.1016/j.nima.2003.08.155http://doi.org/10.1016/j.nima.2003.08.155
K.J. Kim, A synchrotron radiation source with arbitrarily adjustable elliptical polarization. Nuclear Inst.and Methods in Physics Research, A 219, 425 (1984).
K. J. Kim, Circular polarization with crossed-planar undulators in high-gain FELs. Nuclear Inst.and Methods in Physics Research, A 445, 329(2000). doi: 10.1016/S0168-9002(00)00137-6http://doi.org/10.1016/S0168-9002(00)00137-6
Y. Ding, Z. Huang, Statistical analysis of crossed undulator for polarization control in a self-amplified spontaneous emission free electron laser. Phys. Rev. ST Accel. Beams 11, 030702 (2008). doi: 10.1103/PhysRevSTAB.11.030702http://doi.org/10.1103/PhysRevSTAB.11.030702
H. Geng, Y. Ding, and Z. Huang, Crossed undulator polarization control for X-ray FELs in the saturation regime. Nuclear Inst.and Methods in Physics Research, A 622, 276 (2010). doi: 10.1016/j.nima.2010.07.050http://doi.org/10.1016/j.nima.2010.07.050
H. Deng, T. Zhang, L. Feng, et al., Polarization switching demonstration using crossed-planar undulators in a seeded free-electron laser. Phys. Rev. ST. Accel. Beams 17, 020704 (2014). DOI: 10.1103/PhysRevSTAB.17.020704http://doi.org/10.1103/PhysRevSTAB.17.020704
R. Molo, M. Höner, H. Huck, et al., EEHG and Femtoslicing at DELTA. Proceedings of FEL2013, New York, USA, 594-597 (2013).
C. Evain, A. Loulergue, A. Nadji, et al., Soft x-ray femtosecond coherent undulator radiation in a storage ring. New J. Phys. 14, 023003 (2012). doi: 10.1088/1367-2630/14/2/023003http://doi.org/10.1088/1367-2630/14/2/023003
W. Gao, H. Li, L. Wang, Preliminary study of EEHG-based superradiant undulator radiation at the HLS-II storage ring. Chin. Phys. C 41, 078101 (2017). doi: 10.1088/1674-1137/41/7/078101http://doi.org/10.1088/1674-1137/41/7/078101
W. Liu, G. Zhou, Y. Jiao, Generating femtosecond coherent X-ray pulses in a diffraction-limited storage ring with the echo-enabled harmonic generation scheme. Nucl. Sci. Tech. 29, 143 (2018). doi: 10.1007/s41365-018-0476-zhttp://doi.org/10.1007/s41365-018-0476-z.
N. Hu, Z.H. Bai, W. Li, et al., Estimates of Collective Effects in the HALS Storage Ring Having the First Version Lattice. Proceedings of IPAC2017,Copenhagen, Denmark, 3770-3773 (2017).
Z.H. Bai, W. Li, L. Wang, et al., Design of the Second Version of the HALS Storage Ring Lattice. Proceedings of IPAC2018, Vancouver, BC, Canada,4601-4604 (2018).
L. Yu, J. Wu, Theory of high gain harmonic generation: an analytical estimate. Nucl. Instrum. Methods Phys. Res., Sect. A 483, 493(2002). doi: 10.1016/S0168-9002(02)00368-6http://doi.org/10.1016/S0168-9002(02)00368-6
M. Born, W. Emil, Principles of Optics, (Cambridge U. Press, 2009).
S. Reiche, GENESIS 1.3: a fully 3D time-dependent FEL simulation code. Nuclear Inst.and Methods in Physics Research, A 429, 243 (1999). doi: 10.1016/S0168-9002(99)00114-Xhttp://doi.org/10.1016/S0168-9002(99)00114-X
M. Borland, Elegant: A flexible SDDS-compliant code for accelerator simulation, Advance Photon Source. United States: N. p., (2000). doi: 10.2172/761286http://doi.org/10.2172/761286
E. Wigner, On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932). doi: 10.1103/PhysRev.40.749http://doi.org/10.1103/PhysRev.40.749
N. Hay, I. Baker, Y. Guo, et al., Stability-enhanced, high-average power green lasers for precision semiconductor. Processing in Solid State Lasers XXI: Technology and Devices (Vol. 8235, p. 82351E).
M. Poulter, N. Hay, B. Fulford, et al., Q-switched Nd: YAG lasers for high average-power and high peak-power operation. Processing in Solid State Lasers XVIII: Technology and Devices (Vol. 7193, p. 719309).
D. Li, H. Jussila, Y. Wang, et al., Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes. AScientific reports 8, 2738 (2018). doi: 10.1038/s41598-018-21108-3http://doi.org/10.1038/s41598-018-21108-3
E. Treacy, Optical pulse compression with diffraction gratings. IEEE Journal of quantum Electronics 5, 454 (1969). doi: 10.1109/JQE.1969.1076303http://doi.org/10.1109/JQE.1969.1076303
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution