1.Key Laboratory for Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
2.Chengdu Youfang Technology Co., Ltd, Chengdu 610041, China
3.Southwestern Institute of Physics, Chengdu 610041, China
Corresponding author, liuze720@sina.com
Scan for full text
Ze Liu, Fei Meng, Liang-Bi Yi. Simulation of the effects of different substrates, temperature, and substrate roughness on the mechanical properties of Al2O3 coating as tritium penetration barrier. [J]. Nuclear Science and Techniques 30(4):62(2019)
Ze Liu, Fei Meng, Liang-Bi Yi. Simulation of the effects of different substrates, temperature, and substrate roughness on the mechanical properties of Al2O3 coating as tritium penetration barrier. [J]. Nuclear Science and Techniques 30(4):62(2019) DOI: 10.1007/s41365-019-0587-1.
Residual thermal stress in the system is a serious problem that affects the application of tritium permeation barrier coatings in fusion reactors. The stress not only determines the adhesion between coating and substrate, but also changes the properties of the material. In this study, finite element analysis (FEA) was used to investigate the relationship between the residual thermal stress and the mechanical properties of Al,2,O,3, tritium penetration barrier systems. Moreover, the residual thermal stress influenced by factors such as different substrates, temperature, and substrate roughness was also analyzed. The calculation showed that the hardness and elastic modulus increased with increasing compressive stress. However, the hardness and elastic modulus decreased with increasing tensile stress. The systems composed of Al,2,O,3, coatings and different substrates exhibited different trends in mechanical properties. As the temperature increased, the hardness and the elastic modulus increased in an Al,2,O,3,/316L stainless steel system; the trend was opposite in an Al,2,O,3,/Si system. Apart from this, the roughness of the substrate surface in the system could magnify the change in hardness and elastic modulus of the coating. Results showed that all these factors led to variation in the mechanical properties of Al,2,O,3, tritium permeation barrier systems. Thus, the detailed reasons for the changes in mechanical properties of these materials need to be analyzed.
Finite element analysisThermal stressMechanical propertiesAl2O3 tritium penetration barrier systemsNanoindentation
D. Levchuk, F. Koch, H. Maier, et al., Deuterium permeation through Eurofer and α-alumina coated Eurofer. J. Nucl. Mater. 328, 103-106 (2004). doi: 10.1016/j.jnucmat.2004.03.008http://doi.org/10.1016/j.jnucmat.2004.03.008
A. Aiello, A. Ciampichetti, G. Benamati, An overview on tritium permeation barrier development for WCLL blanket concept. J. Nucl. Mater. 329, 1398-1402 (2004). doi: 10.1016/j.jnucmat.2004.04.205http://doi.org/10.1016/j.jnucmat.2004.04.205
T. Wang, J. Pu, C. Bo, et al., Sol–gel prepared Al2O3 coatings for the application as tritium permeation barrier. Fusion Eng. Des. 85, 1068-1072 (2010). doi: 10.1016/j.fusengdes.2010.01.021http://doi.org/10.1016/j.fusengdes.2010.01.021
G. Benamati, C. Chabrol, A. Perujo, E. Rigal, H. Glasbrenner, Development of tritium permeation barriers on Al base in Europe. J. Nucl. Mater. 271, 391-395 (1999). doi: 10.1016/S0022-3115(98)00792-2http://doi.org/10.1016/S0022-3115(98)00792-2
X. Xiang, X. Wang, G. K Guo, et al., Preparation technique and alloying effect of aluminide coatings as tritium permeation barriers: a review. J. Hydrogen Energy 40, 3697-3707 (2015). doi: 10.1016/j.ijhydene.2015.01.052http://doi.org/10.1016/j.ijhydene.2015.01.052
T. Lee, W. K. Kim, Y. J. Lee, et al., Effect of Al2O3 coatings prepared by RF sputtering on polyethylene separators for high-power lithium ion batteries. Macromol. Res. 22, 1190-1195 (2014). doi: 10.1007/s13233-014-2163-1http://doi.org/10.1007/s13233-014-2163-1
S. Kumar, D. Sarangi, P. N. Dixit, et al., Diamond-like carbon films with extremely low stress. Thin Solid Films 346, 130-137 (1999). doi: 10.1016/S0040-6090(98)01500-4http://doi.org/10.1016/S0040-6090(98)01500-4
M. Ban, T. Hasegawa, S. Fujii, et al., Stress and structural properties of diamond-like carbon films deposited by electron beam excited plasma CVD. Diam. Relat. Mater. 12, 47-56 (2003). doi: 10.1016/S0925-9635(02)00265-0http://doi.org/10.1016/S0925-9635(02)00265-0
Y. Oka, M. Kirinuki, Y. Nishimura, et al., Measurement of residual stress in DLC films prepared by plasma-based ion implantation and deposition. Surf. Coat. Technol. 186, 141-145 (2004). doi: 10.1016/j.surfcoat.2004.04.010http://doi.org/10.1016/j.surfcoat.2004.04.010
V. Teixeira. Mechanical integrity in PVD coatings due to the presence of residual stresses. Thin Solid Films, 392, 276-281 (2001). doi: 10.1016/S0040-6090(01)01043-4http://doi.org/10.1016/S0040-6090(01)01043-4
S. Zhang, H. Xie, X. Zeng, et al., Residual stress characterization of diamond-like carbon coatings by an X-ray diffraction method. Surf. Coat. Technol. 122, 219-224 (1999). doi: 10.1016/S0257-8972(99)00298-4http://doi.org/10.1016/S0257-8972(99)00298-4
M. M. Morshed, B. P. McNamara, D. C. Cameron, et al., Stress and adhesion in DLC coatings on 316L stainless steel deposited by a neutral beam source. J. Mater. Process. Technol. 141, 127-131 (2003). doi: 10.1016/S0924-0136(03)00246-2http://doi.org/10.1016/S0924-0136(03)00246-2
M. M. Morshed, D. C. Cameron, B. P. McNamara, et al., DLC films deposited by a neutral beam source: adhesion to biological implant metals. Surf. Coat. Technol. 169, 254-257 (2003). doi: 10.1016/S0257-8972(03)00179-8http://doi.org/10.1016/S0257-8972(03)00179-8
A. Mani, P. Aubert, F. Mercier, et al., Effects of residual stress on the mechanical and structural properties of TiC thin films grown by RF sputtering. Surf. Coat. Technol. 194, 190-195 (2005). doi: 10.1016/j.surfcoat.2004.06.017http://doi.org/10.1016/j.surfcoat.2004.06.017
M. Bai, K. Kato, N. Umehara, et al., Nanoindentation and FEM study of the effect of internal stress on micro/nano mechanical property of thin CNx films. Thin Solid Films, 377, 138-147 (2000). doi: 10.1016/S0040-6090(00)01314-6http://doi.org/10.1016/S0040-6090(00)01314-6
L. Karlsson, L. Hultman, J. E. Sundgren, Influence of residual stresses on the mechanical properties of TiCxN1–x (x=0, 0.15, 0.45) thin films deposited by arc evaporation. Thin Solid Films, 371, 167-177 (2000). doi: 10.1016/S0040-6090(00)00996-2http://doi.org/10.1016/S0040-6090(00)00996-2
R. C. Chang, F. Y. Chen, C. T. Chuang, et al., Residual stresses of sputtering titanium thin films at various substrate temperatures. Nanosci. Nanotechno. 10, 4562-4567 (2010). doi: 10.1166/jnn.2010.1696http://doi.org/10.1166/jnn.2010.1696
A. Mallik, B. C. Ray, Residual stress and nanomechanical properties of sonoelectrodeposited Cu films, Surf. Eng. 27, 551-556 (2011). doi: 10.1179/1743294411Y.0000000011http://doi.org/10.1179/1743294411Y.0000000011
O. Borrero-López, M. Hoffman, A. Bendavid, et al., Substrate effects on the mechanical properties and contact damage of diamond-like carbon thin films. Diam. Relat. Mater. 19, 1273-1280 (2010). doi: 10.1016/j.diamond.2010.06.004http://doi.org/10.1016/j.diamond.2010.06.004
C. Wei, J. Y. Yen, Effect of film thickness and interlayer on the adhesion strength of diamond like carbon films on different substrates. Diam. Relat. Mater. 16, 1325-1330 (2007). doi: 10.1016/j.diamond.2007.02.003http://doi.org/10.1016/j.diamond.2007.02.003
D. Zhu, J. Chen, Thermal stress analysis on chemical vapor deposition tungsten coating as plasma facing material for EAST. J. Nucl. Mater. 455, 185-188 (2014). doi: 10.1016/j.jnucmat.2014.05.054http://doi.org/10.1016/j.jnucmat.2014.05.054
L. M. Jin, N. X. Wang, W. Q. Zhu, et al., FEA-based structural optimization design of a side cooling collimating mirror at SSRF. Nucl. Sci. Tech. 28, 159 (2017). doi: 10.1007/s41365-017-0307-7http://doi.org/10.1007/s41365-017-0307-7
J. B. Yu, J. X. Chen, L. Kang, et al., Thermal analysis and tests of W/Cu brazing for primary collimator scraper in CSNS/RCS. Nucl. Sci. Tech. 28, 46 (2017). doi: 10.1007/s41365-017-0208-9http://doi.org/10.1007/s41365-017-0208-9
A. Karimzadeh, M. R. Ayatollahi, M. Alizadeh, Finite element simulation of nano-indentation experiment on aluminum 1100. Comp. Mater. Sci. 81, 595-600 (2014). doi: 10.1016/j.commatsci.2013.09.019http://doi.org/10.1016/j.commatsci.2013.09.019
L. Gan, B. Ben-Nissan, The effects of mechanical properties of thin films on nano-indentation data: Finite element analysis. Comp. Mater. Sci. 8, 273-281 (1997). doi: 10.1016/s0927-0256(97)97-2http://doi.org/10.1016/s0927-0256(97)97-2
X. Chen, J. Yan, A. M. Karlsson, On the determination of residual stress and mechanical properties by indentation. Mater. Sci. Eng. A 416, 139-149 (2006). doi: 10.1016/j.msea.2005.10.034http://doi.org/10.1016/j.msea.2005.10.034
M. Kot, W. Rakowski, J. M. Lackner, et al., Analysis of spherical indentations of coating-substrate systems: experiments and finite element modeling. Mater. Des. 43, 99-111 (2013). doi: 10.1016/j.matdes.2012.06.040http://doi.org/10.1016/j.matdes.2012.06.040
A. C. Fischer-Cripps. Nanoindentation Instrumentation (Springer, New York, 2011)
W. C. Oliver, G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564-1583 (1992). doi: 10.1557/JMR.1992.1564http://doi.org/10.1557/JMR.1992.1564
M. F. Doerner, D. S. Gardner, W. D. Nix, Plastic properties of thin films on substrates as measured by submicron indentation hardness and substrate curvature techniques. J. Mater. Res. 1, 845-851 (1986). doi: 10.1557/JMR.1986.0845http://doi.org/10.1557/JMR.1986.0845
I. N. Sneddon, The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47-57 (1965). doi: 10.1016/0020-7225(65)90019-4http://doi.org/10.1016/0020-7225(65)90019-4
R. B. King, Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23, 1657-1664 (1987). doi: 10.1016/0020-7683(87)90116-8http://doi.org/10.1016/0020-7683(87)90116-8
R. Elsing, O. Knotek, U. Balting, Calculation of residual thermal stress in plasma-sprayed coatings. Surf. Coat. Technol. 43, 416-425 (1990). doi: 10.1016/0257-8972(90)90093-Rhttp://doi.org/10.1016/0257-8972(90)90093-R
C. Wei, J. F. Yang, A finite element analysis of the effects of residual stress, substrate roughness and non-uniform stress distribution on the mechanical properties of diamond-like carbon films. Diam. Relat. Mater. 20, 839-844 (2011). doi: 10.1016/j.diamond.2011.04.004http://doi.org/10.1016/j.diamond.2011.04.004
W. X. Zhang, X. L. Fan, T. J. Wang, The surface cracking behavior in air plasma sprayed thermal barrier coating system incorporating interface roughness effect. Appl. Surf. Sci. 258, 811-817 (2011). doi: 10.1016/j.apsusc.2011.08.103http://doi.org/10.1016/j.apsusc.2011.08.103
M. Lichinchi, C. Lenardi, J. Haupt, et al., Simulation of Berkovich nanoindentation experiments on thin films using finite element method. Thin solid films 312, 240-248 (1998). doi: 10.1016/S0040-609000739-6(97)http://doi.org/10.1016/S0040-609000739-6(97)
Y. Wu, S. Zhu, T. Liu, et al., The adhesion strength and deuterium permeation property of SiC films synthesized by magnetron sputtering. Appl. Surf. Sci. 307, 615-620 (2014). doi: 10.1016/j.ijhydene.2016.04.233http://doi.org/10.1016/j.ijhydene.2016.04.233
H. Liu, J. Tao, Y. Gautreau, et al., Simulation of thermal stresses in SiC-Al2O3 composite tritium penetration barrier by finite-element analysis. Mater. Des. 30, 2785-2790 (2009). doi: 10.1016/j.matdes.2009.01.025http://doi.org/10.1016/j.matdes.2009.01.025
M. Grujicic, H. Zhao, Optimization of 316 stainless steel/alumina functionally graded material for reduction of damage induced by thermal residual stresses. Mater. Sci. Eng. A 252, 117-132 (1998). doi: 10.1016/s0921-5093(98)98-2http://doi.org/10.1016/s0921-5093(98)98-2
H. Pelletier, J. Krier, A. Cornet, et al., Limits of using bilinear stress–strain curve for finite element modeling of nanoindentation response on bulk materials. Thin Solid Films, 379, 147-155 (2000). doi: 10.1016/s0040-6090(00)01559-5http://doi.org/10.1016/s0040-6090(00)01559-5
Z. Liu, G. G. Yu, A. P. He, et al., Simulation of thermal stress in Er2O3 and Al2O3 tritium penetration barriers by finite-element analysis. Plasma Sci. Technol. 19, 095602 (2017). doi: 10.1088/2058-6272/aa719dhttp://doi.org/10.1088/2058-6272/aa719d
G. Cheng, D. Han, C. Liang. Influence of residual stress on mechanical properties of TiAlN thin films. Surf. Coat. Tech., 228, 328-330 (2013). doi: 10.1016/j.surfcoat.2012.05.108http://doi.org/10.1016/j.surfcoat.2012.05.108
D. J. Ward, A. F. Williams. Finite element simulation of the development of residual stress in IAPVD films. Thin Solid Films, 355, 311-315 (1999). doi: 10101/S0040-6090(99)00507http://doi.org/10101/S0040-6090(99)00507
O. Sarikaya, Effect of some parameters on microstructure and hardness of alumina coatings prepared by the air plasma spraying process. Surf. Coat. Tech. 190, 388-393 (2005). doi: 10.1016/j.surfcoat.2004.02.007http://doi.org/10.1016/j.surfcoat.2004.02.007
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution