1.Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2.Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Nanjing 210016, China
3.Affiliated Hospital of Nanjing University of TCM, Nanjing 210016, China
Corresponding author, tangxiaobin@nuaa.edu.cn
Scan for full text
Chang-Ran Geng, Yao Ai, Xiao-Bin Tang, et al. Quantum dots enhanced Cerenkov luminescence imaging. [J]. Nuclear Science and Techniques 30(5):71(2019)
Chang-Ran Geng, Yao Ai, Xiao-Bin Tang, et al. Quantum dots enhanced Cerenkov luminescence imaging. [J]. Nuclear Science and Techniques 30(5):71(2019) DOI: 10.1007/s41365-019-0599-x.
Cerenkov luminescence imaging (CLI) has been widely investigated for biological imaging. However, the luminescence generated from Cerenkov Effect is relatively weak and has poor penetration ability in biological tissues. These limitations consequently hindered the clinical translation of CLI. In this study, we proposed an in-vitro experimental study for the demonstration of quantum dots (QDs) configurations affected by the improvement of the signal intensity of CLI. Results revealed that the optimal concentrations were 0.1 mg/mL and 0.25 mg/mL for the studied CdSe/ZnS QDs with fluorescence emission peaks of 580 nm and 660 nm, respectively. The detected optical signal intensity with long-wavelength emission QDs were stronger than those with short-wavelength emission QDs. This study illustrates an experiment to study the effects of concentrations and fluorescence emission peaks of QDs on an enhanced optical signal for the external detection of CLI.
Cerenkov luminescence imagingQuantum dotsOptical signalWavelength shift
A. E. Spinelli, D. D'Ambrosio, L. Calderan et al., Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers. Phys. Med. Biol. 55, 483 (2009). doi: 10.1088/0031-9155/55/2/010http://doi.org/10.1088/0031-9155/55/2/010.
B. Brichard, A. Fernandez, H. Ooms et al., Fibre-optic gamma-flux monitoring in a fission reactor by means of Cerenkov radiation. Meas. Sci. Technol. 18, 3257 (2007). doi: 10.1088/0957-0233/18/10/S32http://doi.org/10.1088/0957-0233/18/10/S32.
J. S. Cho, R. Taschereau, S. Olma et al., Cerenkov radiation imaging as a method for quantitative measurements of beta particles in a microfluidic chip. Phys. Med. Biol. 54, 6757 (2009). doi: 10.1088/0031-9155/54/22/001http://doi.org/10.1088/0031-9155/54/22/001.
A. K. Glaser, J. M. Andreozzi, S. C. Davis et al., Video‐rate optical dosimetry and dynamic visualization of IMRT and VMAT treatment plans in water using Cherenkov radiation. Med. Phys. 41, (2014). doi: 10.1118/1.4875704http://doi.org/10.1118/1.4875704.
R. Robertson, M. S. Germanos, C. Li et al., Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys. Med. Biol. 54, N355 (2009). doi: 10.1088/0031-9155/54/16/N01http://doi.org/10.1088/0031-9155/54/16/N01.
S. K. Pandey, J. Kaur, B. Easwaramoorthy et al., Multimodality imaging probe for positron emission tomography and fluorescence imaging studies. Mol. Imaging 13, 7290.2014. 00005 (2014). doi: 10.2310/7290.2014.00005http://doi.org/10.2310/7290.2014.00005.
Y. Zhang, H. Hong, J. W. Engle et al., Positron emission tomography and optical imaging of tumor CD105 expression with a dual-labeled monoclonal antibody. Mol. Pharm. 9, 645-653 (2012). doi: 10.1021/mp200592mhttp://doi.org/10.1021/mp200592m.
Z. Hu, X. Ma, X. Qu et al., Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified Cerenkov luminescence tomography approach. PloS. one. 7, e37623 (2012). doi: 10.1371/journal.pone.0037623http://doi.org/10.1371/journal.pone.0037623.
M. Nahrendorf, E. Keliher, B. Marinelli et al., Hybrid PET-optical imaging using targeted probes. P. Natl. Acad. Sci. USA. 107, 7910-7915 (2010). doi: 10.1073/pnas.0915163107http://doi.org/10.1073/pnas.0915163107.
C. Gigliotti, L. Altabella, F. Boschi et al., Monte Carlo feasibility study for image guided surgery: from direct beta minus detection to Cerenkov luminescence imaging. J. Instrum. 11, P07021 (2016). doi: 10.1088/1748-0221/11/07/P07021http://doi.org/10.1088/1748-0221/11/07/P07021.
J. S. Klein, G. S. Mitchell, S. R. Cherry, Quantitative assessment of Cerenkov luminescence for radioguided brain tumor resection surgery. Phys. Med. Biol. 62, 4183 (2017). doi: 10.1088/1361-6560/aa6641http://doi.org/10.1088/1361-6560/aa6641.
C. M. Carpenter, X. Ma, H. Liu et al., Cerenkov luminescence endoscopy: improved molecular sensitivity with β−-emitting radiotracers. J. Nucl. Med. 55, 1905 (2014). doi: 10.2967/jnumed.114.139105http://doi.org/10.2967/jnumed.114.139105.
S.-R. Kothapalli, H. Liu, J. C. Liao et al., Endoscopic imaging of Cerenkov luminescence. BIOMED. OPT. EXPRESS. 3, 1215-1225 (2012). doi: 10.1364/BOE.3.001215http://doi.org/10.1364/BOE.3.001215.
H. Liu, C. M. Carpenter, H. Jiang et al., Intraoperative imaging of tumors using Cerenkov luminescence endoscopy: a feasibility experimental study. J. Nucl. Med. 53, 1579 (2012). doi: 10.2967/jnumed.111.098541http://doi.org/10.2967/jnumed.111.098541.
R. S. Dothager, R. J. Goiffon, E. Jackson et al., Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of PET isotopes in biological systems. PloS. one. 5, e13300 (2010). doi: 10.1371/journal.pone.0013300http://doi.org/10.1371/journal.pone.0013300.
J. Li, L. W. Dobrucki, M. Marjanovic et al., Enhancement and wavelength-shifted emission of Cerenkov luminescence using multifunctional microspheres. Phys. Med. Biol. 60, 727 (2015). doi: 10.1088/0031-9155/60/2/727http://doi.org/10.1088/0031-9155/60/2/727.
O. Volotskova, C. Sun, J. H. Stafford et al., Efficient radioisotope energy transfer by gold nanoclusters for molecular imaging. Small. 11, 4002-4008 (2015). doi: 10.1002/smll.201500907http://doi.org/10.1002/smll.201500907.
C. Zhou, G. Hao, P. Thomas et al., Near‐infrared emitting radioactive gold nanoparticles with molecular pharmacokinetics. Angew. Chem. 124, 10265-10269 (2012). doi: 10.1002/anie.201203031http://doi.org/10.1002/anie.201203031.
Y. Bernhard, B. Collin, R. A. Decréau, Inter/intramolecular Cherenkov radiation energy transfer (CRET) from a fluorophore with a built-in radionuclide. Chem. Commun. 50, 6711-6713 (2014). doi: 10.1039/c4cc01690dhttp://doi.org/10.1039/c4cc01690d.
X. Cao, X. Chen, F. Kang et al., Intensity enhanced Cerenkov luminescence imaging using terbium-doped Gd2O2S microparticles. ACS. Appl. Mater. Inter. 7, 11775-11782 (2015). doi: 10.1021/acsami.5b00432http://doi.org/10.1021/acsami.5b00432.
X. Ma, F. Kang, F. Xu et al., Enhancement of Cerenkov luminescence imaging by dual excitation of Er3+, Yb3+-doped rare-earth microparticles. PLOs. one. 8, e77926 (2013). doi: 10.1371/journal.pone.0077926http://doi.org/10.1371/journal.pone.0077926.
D. L. Thorek, A. Ogirala, B. J. Beattie et al., Quantitative imaging of disease signatures through radioactive decay signal conversion. Nat. Med. 19, 1345 (2013). doi: 10.1038/nm.3323http://doi.org/10.1038/nm.3323.
F. Boschi, A. E. Spinelli, Quantum dots excitation using pure beta minus radioisotopes emitting Cerenkov radiation. RSC. ADV. 2, 11049-11052 (2012). doi: 10.1039/c2ra22101bhttp://doi.org/10.1039/c2ra22101b.
X. Michalet, F. Pinaud, L. Bentolila et al., Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 307, 538-544 (2005). doi: 10.1126/science.1104274http://doi.org/10.1126/science.1104274.
X. Tang, X. Hou, D. Shu et al., Research on the interaction mechanism between quantum dots and radionuclides for the improvement of Cerenkov luminescence imaging. Sci. China Technol. Sc. 58, 1712-1716 (2015). doi: 10.1007/s11431-015-5897-xhttp://doi.org/10.1007/s11431-015-5897-x.
S. Rempel, A. Podkorytova, A. Rempel, Concentration quenching of fluorescence of colloid quantum dots of cadmium sulfide. Phys. Solid State. 56, 568-571 (2014). doi: 10.1134/S1063783414030251http://doi.org/10.1134/S1063783414030251.
D. M. Willard, L. L. Carillo, J. Jung et al., CdSe− ZnS quantum dots as resonance energy transfer donors in a model protein− protein binding assay. Nano. Lett. 1, 469-474 (2001). doi: 10.1021/nl015565nhttp://doi.org/10.1021/nl015565n.
S. L. Jacques, Optical properties of biological tissues: a review. Phys. Med. Bio. 58, R37 (2013). DOI: 10.1088/0031-9155/58/11/R37http://doi.org/10.1088/0031-9155/58/11/R37
K. Kwon, T. Son, K.-J. Lee et al., Enhancement of light propagation depth in skin: cross-validation of mathematical modeling methods. Lasers Med. Sci. 24, 605-615 (2009). doi: 10.1007/s10103-008-0625-4http://doi.org/10.1007/s10103-008-0625-4
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution